Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 149(4): 832-46, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579286

RESUMEN

Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Frizzled/metabolismo , Lamina Tipo A/metabolismo , Unión Neuromuscular/metabolismo , Membrana Nuclear/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Drosophila melanogaster/ultraestructura , Humanos , Larva/metabolismo , Larva/ultraestructura , Fibras Musculares Esqueléticas/ultraestructura , Membrana Nuclear/ultraestructura , Transducción de Señal
2.
Hum Mol Genet ; 33(13): 1107-1119, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38507070

RESUMEN

The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.


Asunto(s)
Proteínas Asociadas a la Distrofina , Distrofina , Mitocondrias , Retículo Sarcoplasmático , Animales , Ratones , Distrofina/genética , Distrofina/metabolismo , Distrofina/deficiencia , Proteínas Asociadas a la Distrofina/genética , Proteínas Asociadas a la Distrofina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/deficiencia , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mitocondrias/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura
3.
J Cell Physiol ; 239(8): e31293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38770789

RESUMEN

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.


Asunto(s)
Fibras Musculares Esqueléticas , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Animales , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Ratones Noqueados , Autofagia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
4.
PLoS Genet ; 17(3): e1009488, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780446

RESUMEN

Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/ultraestructura , Fibras Musculares Esqueléticas/ultraestructura , Especificidad de Órganos , Oxidación-Reducción , Estrés Oxidativo
5.
Bull Exp Biol Med ; 177(3): 333-338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39126545

RESUMEN

We studied the effect of enteral administration of the glucocorticoid deflazacort (DFC, 1.2 mg/kg per day, 28 days) on the state of skeletal muscles and tissue ultrastructure, as well as the composition of the colon microbiota in dystrophin-deficient mdx mice. DFC has been shown to reduce the intensity of degeneration/regeneration cycles in muscle fibers of mdx mice. This effect of DFC was accompanied by normalization of the size of sarcomeres of skeletal muscles of mdx mice, improvement of the ultrastructure of the subsarcolemmal population of mitochondria, and an increase in the number of organelles, as well as normalization of the number of contact interactions between the sarcoplasmic reticulum and mitochondria. In addition, DFC had a corrective effect on the colon microbiota of mdx mice, which manifested in an increase in the number of the Bifidobacterium genus microorganisms and a decrease in the level of E. coli with reduced enzymatic activity.


Asunto(s)
Colon , Microbioma Gastrointestinal , Glucocorticoides , Ratones Endogámicos mdx , Músculo Esquelético , Pregnenodionas , Animales , Ratones , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Colon/ultraestructura , Pregnenodionas/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Glucocorticoides/farmacología , Distrofina/genética , Distrofina/deficiencia , Distrofina/metabolismo , Bifidobacterium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura
6.
PLoS Genet ; 16(11): e1009179, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175853

RESUMEN

Gene therapy approaches for DMD using recombinant adeno-associated viral (rAAV) vectors to deliver miniaturized (or micro) dystrophin genes to striated muscles have shown significant progress. However, concerns remain about the potential for immune responses against dystrophin in some patients. Utrophin, a developmental paralogue of dystrophin, may provide a viable treatment option. Here we examine the functional capacity of an rAAV-mediated microutrophin (µUtrn) therapy in the mdx4cv mouse model of DMD. We found that rAAV-µUtrn led to improvement in dystrophic histopathology & mostly restored the architecture of the neuromuscular and myotendinous junctions. Physiological studies of tibialis anterior muscles indicated peak force maintenance, with partial improvement of specific force. A fundamental question for µUtrn therapeutics is not only can it replace critical functions of dystrophin, but whether full-length utrophin impacts the therapeutic efficacy of the smaller, highly expressed µUtrn. As such, we found that µUtrn significantly reduced the spacing of the costameric lattice relative to full-length utrophin. Further, immunostaining suggested the improvement in dystrophic pathophysiology was largely influenced by favored correction of fast 2b fibers. However, unlike µUtrn, µdystrophin (µDys) expression did not show this fiber type preference. Interestingly, µUtrn was better able to protect 2a and 2d fibers in mdx:utrn-/- mice than in mdx4cv mice where the endogenous full-length utrophin was most prevalent. Altogether, these data are consistent with the role of steric hindrance between full-length utrophin & µUtrn within the sarcolemma. Understanding the stoichiometry of this effect may be important for predicting clinical efficacy.


Asunto(s)
Terapia Genética/métodos , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Duchenne/terapia , Utrofina/uso terapéutico , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos mdx , Microscopía Electrónica , Contracción Muscular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Sarcolema/patología , Sarcolema/ultraestructura , Utrofina/genética
7.
PLoS Genet ; 16(5): e1008754, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365093

RESUMEN

FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.


Asunto(s)
Núcleo Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Estudios de Casos y Controles , Diferenciación Celular , Núcleo Celular/química , Núcleo Celular/clasificación , Núcleo Celular/patología , Células Cultivadas , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/metabolismo , Mioblastos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuenciación del Exoma
8.
Clin Anat ; 36(8): 1138-1146, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37092576

RESUMEN

Textbooks and atlases of human macroscopic and microscopic anatomy of the larynx generally provide, if at all, only sparse information on the laryngeal Musculus ventricularis. However, several studies indicate that this muscle takes over the function of vestibular (ventricular) fold phonation after denervation of the Musculus vocalis. In the present study, 29 laryngeal specimens were coronally dissected at different levels, i.e. the anterior (L1), middle (L2), and posterior third of the vestibular fold (L3), and they underwent histological analysis. In all specimens the vestibular folds of both hemi-larynxes contained striated muscle bundles in variable amounts, representing a ventricularis muscle. These muscle bundles obviously originated from the lateral (external) and thyroepiglottic part of the thyroarytenoid muscle and the aryepiglottic part of the oblique arytenoid muscle, as has been described by other authors. The areas of vestibular folds and their amounts of ventricularis muscle bundles were measured using image analysis software (imageJ) by manual tracing. The mean area of the vestibular folds of both hemi-larynxes was 27.9 mm2 (SD [standard deviation] ± 9.17), and the area occupied by fibers of the ventricularis muscle was 1.5 mm2 (SD ± 1.78). Statistical analysis comparing the areas of both hemi-larynxes and levels resulted in no significant differences, except for the levels 2 and 3. In level 2, significantly more muscle fibers (2.0 mm2 ; SD ± 2.21) were detectable within the vestibular fold than in level 3 (0.9 mm2 ; SD ± 1.43). Level 1 also contained more muscle fibers (1.1 mm2 ; SD ± 1.06) than level 3, however, without significance. In conclusion, the laryngeal ventricularis muscle is present in the majority of reported cases. Since the muscle is of clinical relevance, it should be included in anatomical textbooks by default.


Asunto(s)
Laringe , Humanos , Laringe/anatomía & histología , Músculos Laríngeos/anatomía & histología , Músculos Laríngeos/fisiología , Pliegues Vocales/anatomía & histología , Pliegues Vocales/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Relevancia Clínica , Procesamiento de Imagen Asistido por Computador
9.
Am J Physiol Cell Physiol ; 321(4): C749-C759, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406904

RESUMEN

Recently, methods for creating three-dimensional (3-D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study, we provide an electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues, focusing on Duchenne muscular dystrophy (DMD). We enlist the 3-D in vitro model of DMD muscle tissue to evaluate muscle cell electrical properties uncoupled from presynaptic neural inputs, an understudied aspect of DMD. Our data show that previously reported electrophysiological aspects of DMD, including effects on membrane potential and membrane resistance, are replicated in the 3-D muscle tissue model. Furthermore, we test a potential therapeutic compound, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle. Therefore, this study serves as a baseline for a new in vitro method to examine potential therapies for muscular disorders.


Asunto(s)
Distrofina/metabolismo , Potenciales de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Ingeniería de Tejidos , Adolescente , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Línea Celular , Niño , Distrofina/genética , Impedancia Eléctrica , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/ultraestructura , Poloxámero/farmacología , Sodio/metabolismo
10.
Hum Mol Genet ; 28(11): 1872-1884, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689883

RESUMEN

Here we characterized a mouse model knocked-in for a frameshift mutation in RYR1 exon 36 (p.Gln1970fsX16) that is isogenic to that identified in one parent of a severely affected patient with recessively inherited multiminicore disease. This individual carrying the RYR1 frameshifting mutation complained of mild muscle weakness and fatigability. Analysis of the RyR1 protein content in a muscle biopsy from this individual showed a content of only 20% of that present in a control individual. The biochemical and physiological characteristics of skeletal muscles from RyR1Q1970fsX16 heterozygous mice recapitulates that of the heterozygous parent. RyR1 protein content in the muscles of mutant mice reached 38% and 58% of that present in total muscle homogenates of fast and slow muscles from wild-type (WT) littermates. The decrease of RyR1 protein content in total homogenates is not accompanied by a decrease of Cav1.1 content, whereby the Cav1.1/RyR1 stoichiometry ratio in skeletal muscles from RyR1Q1970fsX16 heterozygous mice is lower compared to that from WT mice. Electron microscopy (EM) revealed a 36% reduction in the number/area of calcium release units accompanied by a 2.5-fold increase of dyads (triads that have lost one junctional sarcoplasmic reticulum element); both results suggest a reduction of the RyR1 arrays. Compared to WT, muscle strength and depolarization-induced calcium transients in RyR1Q1970fsX16 heterozygous mice muscles were decreased by 20% and 15%, respectively. The RyR1Q1970fsX16 mouse model provides mechanistic insight concerning the phenotype of the parent carrying the RYR1 ex36 mutation and suggests that in skeletal muscle fibres there is a functional reserve of RyR1.


Asunto(s)
Canales de Calcio Tipo L/genética , Debilidad Muscular/genética , Miopatías Estructurales Congénitas/genética , Oftalmoplejía/genética , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Adulto , Alelos , Animales , Modelos Animales de Enfermedad , Mutación del Sistema de Lectura/genética , Heterocigoto , Humanos , Ratones , Microscopía Electrónica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Debilidad Muscular/patología , Miopatías Estructurales Congénitas/fisiopatología , Oftalmoplejía/fisiopatología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/ultraestructura
11.
Hum Mol Genet ; 28(14): 2339-2351, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31220253

RESUMEN

The ß-adrenergic agonists salbutamol and ephedrine have proven to be effective as therapies for human disorders of the neuromuscular junction, in particular many subsets of congenital myasthenic syndromes. However, the mechanisms underlying this clinical benefit are unknown and improved understanding of the effect of adrenergic signalling on the neuromuscular junction is essential to facilitate the development of more targeted therapies. Here, we investigated the effect of salbutamol treatment on the neuromuscular junction in the ColQ deficient mouse, a model of end-plate acetylcholinesterase deficiency. ColQ-/- mice received 7 weeks of daily salbutamol injection, and the effect on muscle strength and neuromuscular junction morphology was analysed. We show that salbutamol leads to a gradual improvement in muscle strength in ColQ-/- mice. In addition, the neuromuscular junctions of salbutamol treated mice showed significant improvements in several postsynaptic morphological defects, including increased synaptic area, acetylcholine receptor area and density, and extent of postjunctional folds. These changes occurred without alterations in skeletal muscle fibre size or type. These findings suggest that ß-adrenergic agonists lead to functional benefit in the ColQ-/- mouse and to long-term structural changes at the neuromuscular junction. These effects are primarily at the postsynaptic membrane and may lead to enhanced neuromuscular transmission.


Asunto(s)
Acetilcolinesterasa/genética , Agonistas Adrenérgicos beta/uso terapéutico , Albuterol/uso terapéutico , Colágeno/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Agrina/metabolismo , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/metabolismo , Debilidad Muscular/terapia , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Unión Neuromuscular/diagnóstico por imagen , Unión Neuromuscular/metabolismo , Receptores Colinérgicos , Transducción de Señal , Transmisión Sináptica/fisiología
12.
PLoS Comput Biol ; 16(3): e1007676, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130207

RESUMEN

As sarcomeres produce the force necessary for contraction, assessment of sarcomere order is paramount in evaluation of cardiac and skeletal myocytes. The uniaxial force produced by sarcomeres is ideally perpendicular to their z-lines, which couple parallel myofibrils and give cardiac and skeletal myocytes their distinct striated appearance. Accordingly, sarcomere structure is often evaluated by staining for z-line proteins such as α-actinin. However, due to limitations of current analysis methods, which require manual or semi-manual handling of images, the mechanism by which sarcomere and by extension z-line architecture can impact contraction and which characteristics of z-line architecture should be used to assess striated myocytes has not been fully explored. Challenges such as isolating z-lines from regions of off-target staining that occur along immature stress fibers and cell boundaries and choosing metrics to summarize overall z-line architecture have gone largely unaddressed in previous work. While an expert can qualitatively appraise tissues, these challenges leave researchers without robust, repeatable tools to assess z-line architecture across different labs and experiments. Additionally, the criteria used by experts to evaluate sarcomeric architecture have not been well-defined. We address these challenges by providing metrics that summarize different aspects of z-line architecture that correspond to expert tissue quality assessment and demonstrate their efficacy through an examination of engineered tissues and single cells. In doing so, we have elucidated a mechanism by which highly elongated cardiomyocytes become inefficient at producing force. Unlike previous manual or semi-manual methods, characterization of z-line architecture using the metrics discussed and implemented in this work can quantitatively evaluate engineered tissues and contribute to a robust understanding of the development and mechanics of striated muscles.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Fibras Musculares Esqueléticas , Miocitos Cardíacos , Sarcómeros , Algoritmos , Animales , Células Cultivadas , Humanos , Microscopía Fluorescente , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Miofibrillas/fisiología , Ratas , Ratas Sprague-Dawley , Sarcómeros/química , Sarcómeros/ultraestructura
13.
Scand J Med Sci Sports ; 31(2): 303-312, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33038024

RESUMEN

The repair, remodeling, and regeneration of myofibers are dependent on satellite cells (SCs), although, the distribution of SCs in different fiber types of human muscle remains inconclusive. There is also a paucity of research comparing muscle fiber characteristics in a sex-specific manner. Therefore, the aim of this study was to investigate fiber type-specific SC content in men and women. Muscle biopsies from vastus lateralis were collected from 64 young (mean age 27 ± 5), moderately trained men (n = 34) and women (n = 30). SCs were identified by Pax7-staining together with immunofluorescent analyses of fiber type composition, fiber size, and myonuclei content. In a mixed population, comparable number of SCs was associated to type I and type II fibers (0.07 ± 0.02 vs 0.07 ± 0.02 SCs per fiber, respectively). However, unlike men, women displayed a fiber type-specific distribution, with SC content being lower in type II than type I fibers (P = .041). Sex-based differences were found specifically for type II fibers, where women displayed lower SC content compared to men (P < .001). In addition, positive correlations (r-values between 0.36-0.56) were found between SC content and type I and type II fiber size in men (P = .03 and P < .01, respectively), whereas similar relationships could not be detected in women. Sex-based differences were also noted for fiber type composition and fiber size, but not for myonuclei content. We hereby provide evidence for sex-based differences present at the myocellular level, which may have important implications when studying exercise- and training-induced myogenic responses in skeletal muscle.


Asunto(s)
Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/citología , Factores Sexuales , Adulto , Núcleo Celular , Ejercicio Físico/fisiología , Femenino , Humanos , Inmunohistoquímica , Masculino , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/anatomía & histología , Músculo Esquelético/química , Músculo Esquelético/citología , Factor de Transcripción PAX7/análisis , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/química , Músculo Cuádriceps/citología , Células Satélite del Músculo Esquelético/ultraestructura , Factores de Tiempo , Adulto Joven
14.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209663

RESUMEN

The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.


Asunto(s)
Adaptación Fisiológica , Inmovilización , Articulaciones , Condicionamiento Físico Animal , Esfuerzo Físico , Tendones/fisiología , Animales , Masculino , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Ratas , Sarcómeros/ultraestructura , Tendones/citología , Tendones/ultraestructura
15.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540821

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-related death, and the prevalence of CRC in young adults is on the rise, making this a largescale clinical concern. Advanced CRC patients often present with liver metastases (LM) and an increased incidence of cachexia, i.e., musculoskeletal wasting. Despite its high incidence in CRC patients, cachexia remains an unresolved issue, and animal models for the study of CRC cachexia, in particular, metastatic CRC cachexia, remain limited; therefore, we aimed to establish a new model of metastatic CRC cachexia. C57BL/6 male mice (8 weeks old) were subcutaneously (MC38) or intrasplenically injected (mMC38) with MC38 murine CRC cells to disseminate LM, while experimental controls received saline (n = 5-8/group). The growth of subcutaneous MC38 tumors was accompanied by a reduction in skeletal muscle mass (-16%; quadriceps muscle), plantarflexion force (-22%) and extensor digitorum longus (EDL) contractility (-20%) compared to experimental controls. Meanwhile, the formation of MC38 LM (mMC38) led to heighted reductions in skeletal muscle mass (-30%; quadriceps), plantarflexion force (-28%) and EDL contractility (-35%) compared to sham-operated controls, suggesting exacerbated cachexia associated with LM. Moreover, both MC38 and mMC38 tumor hosts demonstrated a marked loss of bone indicated by reductions in trabecular (Tb.BV/TV: -49% in MC38, and -46% in mMC38) and cortical (C.BV/TV: -12% in MC38, and -8% in mMC38) bone. Cell culture experiments revealed that MC38 tumor-derived factors directly promote myotube wasting (-18%) and STAT3 phosphorylation (+5-fold), while the pharmacologic blockade of STAT3 signaling was sufficient to preserve myotube atrophy in the presence of MC38 cells (+21%). Overall, these results reinforce the notion that the formation of LM heightens cachexia in an experimental model of CRC.


Asunto(s)
Adenocarcinoma/secundario , Caquexia/etiología , Neoplasias Colorrectales/complicaciones , Neoplasias Hepáticas/secundario , Adenocarcinoma/complicaciones , Adenocarcinoma/patología , Animales , Caquexia/patología , Caquexia/fisiopatología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Fémur/patología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Fibras Musculares Esqueléticas/ultraestructura , Debilidad Muscular/etiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Factor de Transcripción STAT3 , Tejido Subcutáneo , Microtomografía por Rayos X
16.
Am J Physiol Endocrinol Metab ; 318(6): E886-E889, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255679

RESUMEN

The measurement of mitochondrial content is essential for bioenergetic research, as it provides a tool to evaluate whether changes in mitochondrial function are strictly due to changes in content or other mechanisms that influence function. In this perspective, we argue that commonly used biomarkers of mitochondrial content may possess limited utility for capturing changes in content with physiological intervention. Moreover, we argue that they may not provide reliable estimates of content in certain pathological situations. Finally, we discuss potential solutions to overcome issues related to the utilization of biomarkers of mitochondrial content. Shedding light on this important issue will hopefully aid conclusions about the mitochondrial structure-function relationship.


Asunto(s)
Cardiolipinas/metabolismo , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ejercicio Físico/fisiología , Mitocondrias Musculares/ultraestructura , Recambio Mitocondrial , Fibras Musculares Esqueléticas/ultraestructura , Biomarcadores , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Enfermedad Arterial Periférica/metabolismo , Reproducibilidad de los Resultados
17.
Am J Physiol Endocrinol Metab ; 318(6): E848-E855, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32369416

RESUMEN

Disturbances in skeletal muscle lipid oxidation might induce ectopic fat deposition and lipotoxicity. Nevertheless, the cellular mechanisms that regulate skeletal muscle lipid oxidation have not been fully determined. We aimed to determine whether there was an association between relative whole body lipid oxidation and mitochondrial size or mitochondria-sarcoplasmic reticulum interactions in the skeletal muscle. Twelve healthy men were included [mean (standard deviation), 24.7 (1.5) yr old, 24.4 (2.6) kg/m2]. The respiratory quotient (RQ) was used to estimate relative lipid oxidation at rest and during exercise (50% maximal oxygen consumption, 600 kcal expended). A skeletal muscle biopsy was obtained from the vastus lateralis at rest. Transmission electron microscopy was used to determine mitochondrial size and mitochondria-sarcoplasmic reticulum interactions (≤50 nm of distance between organelles). Protein levels of fusion/fission regulators were measured in skeletal muscle by Western blot. Resting RQ and exercise RQ associated inversely with intermyofibrillar mitochondrial size (r = -0.66 and r = -0.60, respectively, P < 0.05). Resting RQ also associated inversely with the percentage of intermyofibrillar mitochondria-sarcoplasmic reticulum interactions (r = -0.62, P = 0.03). Finally, intermyofibrillar mitochondrial size associated inversely with lipid droplet density (r = -0.66, P = 0.01) but directly with mitochondria fusion-to-fission ratio (r = 0.61, P = 0.03). Our results show that whole body lipid oxidation is associated with skeletal muscle intermyofibrillar mitochondrial size, fusion phenotype, and mitochondria-sarcoplasmic-reticulum interactions in nondiabetic humans.


Asunto(s)
Ejercicio Físico/fisiología , Metabolismo de los Lípidos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Fibras Musculares Esqueléticas/ultraestructura , Músculo Cuádriceps/ultraestructura , Retículo Sarcoplasmático/ultraestructura , Adolescente , Adulto , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Masculino , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Tamaño Mitocondrial , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Oxidación-Reducción , Consumo de Oxígeno , Músculo Cuádriceps/metabolismo , Adulto Joven
18.
Biochem Biophys Res Commun ; 528(2): 398-403, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31926596

RESUMEN

We have established a novel, simple, and highly reproducible method to generate skeletal muscle cells from mouse skin. Small pieces of skin from the back of mice were cultured in extracellular material-coated dishes in typical culture medium for about 3 weeks. Myotubes formed after about a week, grew into twitching myotubes, and became twitching myotube clumps after 3 weeks. Skeletal muscle cells are formed spontaneously with no induction. Myotubes were immunologically positive for myosin heavy chains, MyoD, and myogenin. Ultrastructural analysis revealed the presence of the sarcomere structure. Furthermore, PAX7+/MyoD- muscle stem cells proliferated around these myotubes, and MyoD+/myogenin+/MHC-- cells were also observed. Moreover, we investigated the formation of skeletal muscle cells from the sialidosis mouse skin, and showed that it is decreased compared to that of the wild type. Our method to generate skeletal muscle cells from skin is thought to be useful for the investigation of muscle cell development and muscle-related disorders.


Asunto(s)
Células Musculares/citología , Músculo Esquelético/citología , Piel/citología , Técnicas de Cultivo de Tejidos , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Masculino , Ratones , Modelos Biológicos , Mucolipidosis/patología , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/ultraestructura , Neuraminidasa/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R274-R283, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31823671

RESUMEN

Phenotypic flexibility has received considerable attention in the last decade; however, whereas many studies have reported amplitude of variation in phenotypic traits, much less attention has focused on the rate at which traits can adjust in response to sudden changes in the environment. We investigated whole animal and muscle phenotypic changes occurring in black-capped chickadees (Poecile atricapillus) acclimated to cold (-5°C) and warm (20°C) temperatures in the first 3 h following a 15°C temperature drop (over 3 h). Before the temperature change, cold-acclimated birds were consuming 95% more food, were carrying twice as much body fat, and had 23% larger pectoralis muscle fiber diameters than individuals kept at 20°C. In the 3 h following the temperature drop, these same birds altered their pectoralis muscle ultrastructure by increasing the number of capillaries per fiber area and the number of nuclei per millimeter of fiber by 22%, consequently leading to a 22% decrease in myonuclear domain (amount of cytoplasm serviced per nucleus), whereas no such changes were observed in the warm-acclimated birds. To our knowledge, this is the first demonstration of such a rapid adjustment in muscle fiber ultrastructure in vertebrates. These results support the hypothesis that chickadees maintaining a cold phenotype are better prepared than warm-phenotype individuals to respond to a sudden decline in temperature, such as what may be experienced in their natural wintering environment.


Asunto(s)
Aclimatación , Capilares/ultraestructura , Frío , Respuesta al Choque por Frío , Fibras Musculares Esqueléticas/ultraestructura , Passeriformes/fisiología , Músculos Pectorales/irrigación sanguínea , Animales , Fenotipo , Estaciones del Año , Factores de Tiempo
20.
Eur J Neurol ; 27(3): 514-521, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31571350

RESUMEN

BACKGROUND AND PURPOSE: Dermatomyositis (DM) with anti-nuclear matrix protein-2 (NXP-2) antibodies usually shows multifocal ischaemic lesions in muscle. Here, we aimed to investigate the microarteriopathy underlying muscle ischaemia in anti-NXP-2-positive DM. METHODS: A total of 16 patients diagnosed with anti-NXP-2-positive DM were investigated by muscle biopsy. A total of 13 patients with DM with other myositis-specific antibodies and 11 normal controls were included for comparison. Immunofluorescence assays were performed to localize endothelial cells, smooth muscle cells and pericytes, and to determine lesions in myofibers and microvessels by vascular endothelial growth factor and myxovirus resistance protein A (MxA). Electron microscopy was carried out to assess ultrastructure alterations. RESULTS: Subcutaneous edema, severe muscle weakness and dysphagia together with elevated creatine kinase, D-dimer and triglyceride levels, and decreased albumin levels were found in anti-NXP-2-positive DM. Muscle ischaemia included regional muscle edema, perifascicular atrophy, microinfarcts and focal punched-out vacuoles. The density of arterioles was higher in anti-NXP-2-positive DM (P ï¼œ 0.05). Perimysial arterioles with thickened vascular wall, thrombosis and lipid accumulation were found in the vascular wall of diseased perimysial arterioles. The frequency of diseased arterioles and thrombosis was higher in anti-NXP-2-positive DM (P < 0.05). Sarcoplasmic vascular endothelial growth factor and MxA expression was observed in multifocal ischaemic lesions. MxA was present in endothelial and smooth muscle cells of the diseased arterioles and pericytes. Electron microscopy confirmed damaged capillaries and tubuloreticular structures. CONCLUSIONS: Our research suggested that perimysial arterioles were most commonly involved in anti-NXP-2-positive DM, which led to muscle ischaemia.


Asunto(s)
Adenosina Trifosfatasas/inmunología , Anticuerpos Antinucleares/análisis , Proteínas de Unión al ADN/inmunología , Dermatomiositis/patología , Adolescente , Adulto , Arteriolas/patología , Biopsia , Capilares/patología , Niño , Preescolar , Dermatomiositis/complicaciones , Células Endoteliales/patología , Femenino , Humanos , Lactante , Masculino , Microcirculación , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/ultraestructura , Proteínas de Resistencia a Mixovirus/biosíntesis , Proteínas de Resistencia a Mixovirus/genética , Pericitos/patología , Pericitos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA