Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158346

RESUMEN

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Metabolismo de los Lípidos , Replicación Viral , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones , Antivirales/farmacología , Humanos , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/virología , Proteínas Quinasas Activadas por AMP/metabolismo , Chalconas/farmacología , Triterpenos/farmacología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Flavivirus/efectos de los fármacos , Línea Celular
2.
J Cell Biochem ; 124(1): 127-145, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502494

RESUMEN

Numerous pathogens affecting human is present in the flavivirus family namely west nile, dengue, yellow fever, and zika which involves in development of global burden and distressing the environment economically. Till date, no approved drugs are available for targeting these viruses. The threat which urged the identification of small molecules for the inhibition of these viruses is the spreading of serious viral diseases. The recent outbreak of zika and dengue infections postured a solemn risk to worldwide public well-being. RNA-dependent RNA polymerase (RdRp) is the supreme adaptable enzymes of all the RNA viruses which is responsible for the replication and transcription of genome among the structural and nonstructural proteins of flaviviruses. It is understood that the RdRp of the flaviviruses are similar stating that the japanese encephalitis and west nile shares 70% identity with zika whereas the dengue serotype 2 and 3 shares the identity of 76% and 81%, respectively. In this study, we investigated the binding site of four flaviviral RdRp and provided insights into various interaction of the molecules using the computational approach. Our study helps in recognizing the potent compounds that could inhibit the viral protein as a common inhibitor. Additionally, with the conformational stability analysis, we proposed the possible mechanism of inhibition of the identified common small molecule toward RdRp of flavivirus. Finally, this study could be an initiative for the identification of common inhibitors and can be explored further for understanding the mechanism of action through in vitro studies for the study on efficacy.


Asunto(s)
Reposicionamiento de Medicamentos , Flavivirus , ARN Polimerasa Dependiente del ARN , Humanos , Dengue/tratamiento farmacológico , Flavivirus/efectos de los fármacos , Flavivirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Virus Zika/efectos de los fármacos , Virus Zika/enzimología , Infección por el Virus Zika/tratamiento farmacológico
3.
J Virol ; 96(4): e0177821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908449

RESUMEN

RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we show that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived small interfering RNA (siRNA) into the RNA-induced silencing complex, thereby enhancing the antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited the replication of flaviviruses, including dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrate that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control the vector transmission of arboviruses or viral diseases in insect farming. IMPORTANCE RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanisms in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that was previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Here, we show that enoxacin treatment inhibited viral replication of DCV and CrPV in Drosophila cells and adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into the Ago2-incorporated RNA-induced silencing complex and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin displayed effective RNAi-dependent antiviral effects against flaviviruses, such as dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral effects against diverse viruses in insects.


Asunto(s)
Antivirales/farmacología , Enoxacino/farmacología , Virus de Insectos/efectos de los fármacos , Interferencia de ARN/efectos de los fármacos , Aedes , Animales , Línea Celular , Drosophila , Flavivirus/clasificación , Flavivirus/efectos de los fármacos , Virus de Insectos/clasificación , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Replicación Viral/efectos de los fármacos
4.
J Virol ; 96(2): e0177421, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34757841

RESUMEN

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Asunto(s)
Alphavirus/fisiología , Flavivirus/fisiología , Proteínas Virales de Fusión/metabolismo , Virión/metabolismo , Replicación Viral , Células A549 , Alphavirus/efectos de los fármacos , Cloruro de Amonio/farmacología , Animales , Culicidae/virología , Flavivirus/efectos de los fármacos , Humanos , Interferón Tipo I/deficiencia , Ratones , Ratones Mutantes , Mutación , Dominios Proteicos , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virión/genética , Ensamble de Virus/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/genética , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Infección por el Virus Zika/virología
5.
PLoS Pathog ; 15(8): e1007949, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31374104

RESUMEN

Host encounters with viruses lead to an innate immune response that must be rapid and broadly targeted but also tightly regulated to avoid the detrimental effects of unregulated interferon expression. Viral stimulation of host negative regulatory mechanisms is an alternate method of suppressing the host innate immune response. We examined three key mediators of the innate immune response: NF-KB, STAT1 and STAT2 during HCV infection in order to investigate the paradoxical induction of an innate immune response by HCV despite a multitude of mechanisms combating the host response. During infection, we find that all three are repressed only in HCV infected cells but not in uninfected bystander cells, both in vivo in chimeric mouse livers and in cultured Huh7.5 cells after IFNα treatment. We show here that HCV and Flaviviruses suppress the innate immune response by upregulation of PDLIM2, independent of the host interferon response. We show PDLIM2 is an E3 ubiquitin ligase that also acts to stimulate nuclear degradation of STAT2. Interferon dependent relocalization of STAT1/2 to the nucleus leads to PDLIM2 ubiquitination of STAT2 but not STAT1 and the proteasome-dependent degradation of STAT2, predominantly within the nucleus. CRISPR/Cas9 knockout of PDLIM2 results in increased levels of STAT2 following IFNα treatment, retention of STAT2 within the nucleus of HCV infected cells after IFNα stimulation, increased interferon response, and increased resistance to infection by several flaviviruses, indicating that PDLIM2 is a global regulator of the interferon response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Infecciones por Flavivirus/inmunología , Flavivirus/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Inmunidad Innata/inmunología , Proteínas con Dominio LIM/fisiología , Factor de Transcripción STAT2/metabolismo , Animales , Antivirales/farmacología , Flavivirus/efectos de los fármacos , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón-alfa/farmacología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , FN-kappa B , Factor de Transcripción STAT2/genética , Transducción de Señal
6.
Arch Virol ; 166(5): 1433-1438, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683474

RESUMEN

The recent introduction of Zika virus (ZIKV), the recurrence of dengue virus (DENV), and the lethality of yellow fever virus (YFV) have had a significant impact on Brazilian society and public health. Here, we targeted two cellular kinases implicated in cell proliferation and cancer that are also important for viral replication: mitogen-activated protein kinase kinase (MEK) and Src. We used two MEK inhibitors - trametinib and selumetinib - and two Src inhibitors - saracatinib and bosutinib - to inhibit ZIKV, DENV, and YFV replication in cell culture. The cytotoxicity of the four inhibitors was determined by the observation of abnormal morphology and quantification of adherent cells by crystal violet staining. The antiviral activity of these drugs was assessed based on the reduction of plaque-forming units in cell culture as evidence of the inhibition of the replication of the selected flaviviruses. All four inhibitors showed antiviral activity, but among them, trametinib was the safest and most efficacious against all of the viruses, inhibiting the replication of ZIKV and YFV by 1000-fold, and DENV2/3 by nearly 100-fold. This pan-antiviral effect shows that trametinib could be repurposed for the treatment of flaviviral infections.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Flavivirus/clasificación , Flavivirus/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Vero , Replicación Viral/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
7.
Rev Med Virol ; 30(4): e2100, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32101633

RESUMEN

Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Flavivirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Flavivirus/efectos de los fármacos , Infecciones por Flavivirus/tratamiento farmacológico , Humanos , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología
8.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684782

RESUMEN

Viral infections are among the most complex medical problems and have been a major threat to the economy and global health. Several epidemics and pandemics have occurred due to viruses, which has led to a significant increase in mortality and morbidity rates. Natural products have always been an inspiration and source for new drug development because of their various uses. Among all-natural sources, plant sources are the most dominant for the discovery of new therapeutic agents due to their chemical and structural diversity. Despite the traditional use and potential source for drug development, natural products have gained little attention from large pharmaceutical industries. Several plant extracts and isolated compounds have been extensively studied and explored for antiviral properties against different strains of viruses. In this review, we have compiled antiviral plant extracts and natural products isolated from plants reported since 2015.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Productos Biológicos/farmacología , Desarrollo de Medicamentos , Extractos Vegetales/farmacología , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/farmacología , Antivirales/química , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Descubrimiento de Drogas , Flavivirus/efectos de los fármacos , Virus de Hepatitis/efectos de los fármacos , Humanos , Estructura Molecular , Orthomyxoviridae/efectos de los fármacos , Extractos Vegetales/química , Simplexvirus/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-32284379

RESUMEN

Bunyaviruses are significant human pathogens, causing diseases ranging from hemorrhagic fevers to encephalitis. Among these viruses, La Crosse virus (LACV), a member of the California serogroup, circulates in the eastern and midwestern United States. While LACV infection is often asymptomatic, dozens of cases of encephalitis are reported yearly. Unfortunately, no antivirals have been approved to treat LACV infection. Here, we developed a method to rapidly test potential antivirals against LACV infection. From this screen, we identified several potential antiviral molecules, including known antivirals. Additionally, we identified many novel antivirals that exhibited antiviral activity without affecting cellular viability. Valinomycin, a potassium ionophore, was among our top targets. We found that valinomycin exhibited potent anti-LACV activity in multiple cell types in a dose-dependent manner. Valinomycin did not affect particle stability or infectivity, suggesting that it may preclude virus replication by altering cellular potassium ions, a known determinant of LACV entry. We extended these results to other ionophores and found that the antiviral activity of valinomycin extended to other viral families, including bunyaviruses (Rift Valley fever virus, Keystone virus), enteroviruses (coxsackievirus, rhinovirus), flavirivuses (Zika virus), and coronaviruses (human coronavirus 229E [HCoV-229E] and Middle East respiratory syndrome CoV [MERS-CoV]). In all viral infections, we observed significant reductions in virus titer in valinomycin-treated cells. In sum, we demonstrate the importance of potassium ions to virus infection, suggesting a potential therapeutic target to disrupt virus replication.


Asunto(s)
Antivirales/farmacología , Encefalitis de California/tratamiento farmacológico , Ionóforos/farmacología , Virus La Crosse/efectos de los fármacos , Potasio/metabolismo , Valinomicina/farmacología , Replicación Viral/efectos de los fármacos , Coronavirus/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Encefalitis de California/virología , Enterovirus/efectos de los fármacos , Flavivirus/efectos de los fármacos , Humanos , Orthobunyavirus/efectos de los fármacos , Estados Unidos
10.
Bioorg Med Chem ; 28(22): 115713, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33128910

RESUMEN

Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Nucleósidos/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
11.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287144

RESUMEN

The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/química , Amidas/química , Amidas/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Coronavirus/genética , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavivirus/efectos de los fármacos , Flavivirus/enzimología , Flavivirus/genética , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Hepacivirus/genética , Humanos , Pirazinas/química , Pirazinas/farmacología , Infecciones por Virus ARN/epidemiología , Virus ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
12.
Artículo en Inglés | MEDLINE | ID: mdl-31685463

RESUMEN

Usutu virus (USUV) has become increasingly relevant in recent years, with large outbreaks that sporadically have affected humans being reported in wildlife. Similarly to the rest of flaviviruses, USUV contains a positive-sense single-stranded RNA genome which is replicated by the activity of nonstructural protein 5 (NS5). USUV NS5 shows high sequence identity with the remaining viruses in this genus. This permitted us to identify the predicted methyltransferase domain and the RNA-dependent RNA polymerase domain (RdRpD). Owing to their high degree of conservation, viral polymerases are considered priority targets for the development of antiviral compounds. In the present study, we cloned and expressed the entire NS5 and the RdRpD in a heterologous system and used purified preparations for protein characterizations. We determined the optimal reaction conditions by investigating how variations in different physicochemical parameters, such as buffer concentration, temperature, and pH, affect RNA polymerization activity. We also found that USUV polymerase, but not the full-length NS5, exhibits cooperative activity in the synthesis of RNA and that the RdRp activity is not inhibited by sofosbuvir. To further examine the characteristics of USUV polymerase in a more specifically biological context, we have expressed NS5 and the RdRpD in eukaryotic cells and analyzed their subcellular location. NS5 is predominantly found in the cytoplasm; a significant proportion is directed to the nucleus, and this translocation involves nuclear location signals (NLS) located at least between the MTase and RdRpD domains.


Asunto(s)
Flavivirus/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , Núcleo Celular/metabolismo , Flavivirus/efectos de los fármacos , Flavivirus/genética , Unión Proteica , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
13.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046456

RESUMEN

Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. We describe here a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly and involves release of malfunctioning membrane-associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad-spectrum antiviral interferon-stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) as the cellular protein targeted by viperin. Viperin-induced antiviral activity, as well as C-particle release, was stimulated by GBF1 inhibition and knockdown and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive noninfectious virus particles via a GBF1-dependent mechanism. This as-yet-undescribed antiviral mechanism allows potential therapeutic intervention.IMPORTANCE The interferon response can target viral infection on almost every level; however, very little is known about the interference of flavivirus assembly. We show here that interferon, through the action of viperin, can disturb the assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appears to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study, we show that viperin induces capsid particle release by interacting and inhibiting the function of the cellular protein Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and is essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target.


Asunto(s)
Infecciones por Flavivirus/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interferón Tipo I/farmacología , Proteínas/metabolismo , Células A549 , Animales , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Flavivirus/efectos de los fármacos , Flavivirus/patogenicidad , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Células Vero , Virulencia , Ensamble de Virus/efectos de los fármacos
14.
PLoS Pathog ; 13(5): e1006411, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542603

RESUMEN

The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 µM, 11.4 µM, and 4.8 µM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 µM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavivirus/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas no Estructurales Virales/química , Regulación Alostérica , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Flavivirus/química , Flavivirus/enzimología , Flavivirus/genética , Cinética , Conformación Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
15.
Microb Pathog ; 132: 362-368, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31054366

RESUMEN

Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. The cellular factors required for DTMUV replication have been poorly studied. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. In the present study, we explored the interplay between DTMUV replication and the UPS in BHK-21 cells and found that treatment with proteasome inhibitor (MG132 and lactacystin) significantly decreased the DTMUV progency at the early infection stage. We further revealed that inhibition of the UPS mainly occurs on the level of viral protein expression and RNA transcription. In addition, using specific siRNAs targeting ubiquitin reduces the production of viral progeny. In the presence of MG132 the staining for the envelope protein of DTMUV was dramatically reduced in comparison with the untreated control cells. Overall, our observations reveal an important role of the UPS in multiple steps of the DTMUV infection cycle and identify the UPS as a potential drug target to modulate the impact of DTMUV infection.


Asunto(s)
Flavivirus/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Replicación Viral/fisiología , Acetilcisteína/análogos & derivados , Acetilcisteína/antagonistas & inhibidores , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Patos , Flavivirus/efectos de los fármacos , Flavivirus/patogenicidad , Técnicas de Silenciamiento del Gen , Leupeptinas/antagonistas & inhibidores , Enfermedades de las Aves de Corral/virología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , ARN Interferente Pequeño , Transfección , Ubiquitina/efectos de los fármacos , Ubiquitina/genética , Proteínas del Envoltorio Viral , Internalización del Virus
16.
Virol J ; 16(1): 134, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718685

RESUMEN

BACKGROUND: Duck tembusu virus (DTMUV, genus Flaviviruses, family Flaviviridae) is an emerging flavivirus that can infect a wide range of cells and cell lines in vitro, though the initial step of virus invasion remains obscure. METHODS: In this study, drug treatments that including heparin, chondroitin sulfate, heparinase I, chondroitinase ABC and trypsin were applied to detect the influence of DTMUV absorption, subsequently, the copy number of viral genome RNA was analyzed by quantitative real-time PCR. The inhibition process of viral absorption or entry by heparin was determined by western blotting, and the cytotoxicity of drug treated cells was detected by cell counting kit-8. RESULTS: We found that the desulfation of glycosaminoglycans (GAGs) with sodium chlorate had a significant effect on the adsorption of DTMUV in both BHK21 and DEF cells. Based on this result, we incubated cells with a mixture of DTMUV and GAGs competition inhibitors or pre-treated cells with inhibitors, after incubation with the virus, the NS5 expression of DTMUV and viral titers were detected. The data suggested that heparin can significantly inhibit the absorption of DTMUV in a dose dependent manner but not at the step of viral entry in BHK21 and DEF cells. Meanwhile, heparinase I can significantly inhibit DTMUV attachment step. CONCLUSIONS: Our results clearly proved that heparin sulfate plays an important role in the first step of DTMUV entry, viral attachment, in both BHK21 and DEF cells, which sheds light on the entry mechanism of DTMUV.


Asunto(s)
Flavivirus/fisiología , Heparina/farmacología , Acoplamiento Viral/efectos de los fármacos , Animales , Línea Celular , Cloratos/farmacología , Cricetinae , Patos , Fibrinolíticos/farmacología , Flavivirus/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Liasa de Heparina/farmacología , Tripsina/farmacología
17.
Bioorg Med Chem Lett ; 29(15): 1913-1917, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176698

RESUMEN

The NS2B-NS3 protease is a promising target for the development of drugs against dengue virus (DENV), West Nile virus (WNV) and related flaviviruses. We report the systematic variation of the peptide backbone of the two lead compounds Bz-Arg-Lys-d-Phg-NH2 and Bz-Arg-Lys-d-Phg(OBn)-NH2. While inhibitory activity against WNV protease was generally decreased, the inhibitory potency against DENV protease could be conserved and increased in several peptidomimetics, particularly in those containing a (NMe)arginine fragment or an N-terminal α-keto amide. Methylation at the α-position of the C-terminal phenylglycine led to a 6-fold higher potency against DENV protease. Peptidomimetics with modified backbone showed increased resistance against hydrolytic attack by trypsin and α-chymotrypsin.


Asunto(s)
Flavivirus/efectos de los fármacos , Peptidomiméticos/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Humanos , Estructura Molecular , Peptidomiméticos/farmacología , Inhibidores de Proteasas/farmacología
18.
Bioorg Med Chem ; 27(18): 3963-3978, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351847

RESUMEN

Currently, more than 70 flaviviruses were identified and reported in the literature, whose Dengue (DENV), Zika (ZIKV), and West Nile (WNV) viruses have been responsible for millions of cases of infections worldwide, mainly in developing countries. These viruses are transmitted by the bite of mosquitoes from genus Aedes, or Culex and, in some cases, Stegomyia. Despite numerous efforts to identify a selective, safe, and effective antiviral agent, there is no currently approved drug for the treatment of flaviviral infections. Then, current pharmacological therapy has the objective to treat the clinical symptoms. Various peptidomimetics and peptide-derivatives have been synthesized and evaluated against several biological targets from flaviviruses with different applications, such as diagnosis, E protein inhibitors, entry inhibitors, virucidal inhibitors, and also viral replication inhibitors. Flaviviral replication depends on the NS3pro that is completely activated when it is complexed to its cofactor, NS2B; forming a viral enzymatic complex. The development of NS2B-NS3pro inhibitors is considered a challenging work due to its active site is shallow and open-pocket. In this work, we report all advances involving peptidomimetics, peptide-derived, and peptide-hybrids found in the literature. In sense, we discuss the influence of different functional groups in the activity and selectivity. Moreover, the first inhibitors reported in the literature as covalent ligands, comprising two basic residues followed by an electrophilic moiety that binds to the catalytic serine (Ser135-O-) are also discussed in details, such as trifluoromethyl ketones, aldehydes, and boronic acids. Furthermore, it is presented the influence of introducing transition metals, providing metallopeptide inhibitors; and cyclization of linear peptides, generating cyclic and macrocyclic peptide inhibitors. Finally, we provide the most accurate state of the art found in the literature, which can be utilized to design new and effective antiviral agents.


Asunto(s)
Dengue/tratamiento farmacológico , Flavivirus/efectos de los fármacos , Péptidos/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Virus del Nilo Occidental/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Humanos , Péptidos/farmacología , Inhibidores de Proteasas/farmacología
19.
Molecules ; 24(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010179

RESUMEN

Silymarin flavonolignans are well-known agents that typically possess antioxidative, anti-inflammatory, and hepatoprotective functions. Recent studies have also documented the antiviral activities of silymarin and its derivatives against several viruses, including the flaviviruses (hepatitis C virus and dengue virus), togaviruses (Chikungunya virus and Mayaro virus), influenza virus, human immunodeficiency virus, and hepatitis B virus. This review will describe some of the latest preclinical and clinical studies detailing the antiviral profiles of silymarin and its derivatives, and discuss their relevance for antiviral drug development.


Asunto(s)
Antivirales/farmacología , Flavonolignanos/farmacología , Silimarina/farmacología , Antivirales/química , Virus Chikungunya/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Flavivirus/efectos de los fármacos , Flavonolignanos/química , VIH/efectos de los fármacos , Hepacivirus/efectos de los fármacos , Silimarina/química , Togaviridae/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-29914957

RESUMEN

Flaviviruses constitute an increasing source of public health concern, with growing numbers of pathogens causing disease and geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there are currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. In this study, we demonstrate that both viruses are sensitive to three ribonucleosides, favipiravir, ribavirin, and 5-fluorouracil, that have shown mutagenic activity against other RNA viruses while remaining unaffected by a mutagenic deoxyribonucleoside. Serial cell culture passages of ZIKV in the presence of these compounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied between every passage, but not in experiments involving undiluted virus, indicating an overall lower susceptibility than ZIKV. Although the two viruses are inhibited by the same three drugs, ZIKV is relatively more susceptive to serial passage in the presence of purine analogues (favipiravir and ribavirin), while USUV replication is suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically correlate with the increases in the mutation frequencies observed in each nucleoside treatment. These results are relevant to the development of efficient therapies based on lethal mutagenesis and support the rational selection of different mutagenic nucleosides for each pathogen. We will discuss the implications of these results to the fidelity of flavivirus replication and the design of antiviral therapies based on lethal mutagenesis.


Asunto(s)
Flavivirus/efectos de los fármacos , Flavivirus/genética , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , Mutágenos/farmacología , Virus Zika/efectos de los fármacos , Virus Zika/genética , Amidas/farmacología , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fluorouracilo/farmacología , Tasa de Mutación , Nucleósidos/farmacología , Pirazinas/farmacología , Ribavirina/farmacología , Ribonucleósidos/farmacología , Pase Seriado/métodos , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA