Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.917
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Nature ; 613(7945): 667-675, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697864

RESUMEN

Continuous imaging of cardiac functions is highly desirable for the assessment of long-term cardiovascular health, detection of acute cardiac dysfunction and clinical management of critically ill or surgical patients1-4. However, conventional non-invasive approaches to image the cardiac function cannot provide continuous measurements owing to device bulkiness5-11, and existing wearable cardiac devices can only capture signals on the skin12-16. Here we report a wearable ultrasonic device for continuous, real-time and direct cardiac function assessment. We introduce innovations in device design and material fabrication that improve the mechanical coupling between the device and human skin, allowing the left ventricle to be examined from different views during motion. We also develop a deep learning model that automatically extracts the left ventricular volume from the continuous image recording, yielding waveforms of key cardiac performance indices such as stroke volume, cardiac output and ejection fraction. This technology enables dynamic wearable monitoring of cardiac performance with substantially improved accuracy in various environments.


Asunto(s)
Ecocardiografía , Diseño de Equipo , Corazón , Dispositivos Electrónicos Vestibles , Humanos , Gasto Cardíaco , Ecocardiografía/instrumentación , Ecocardiografía/normas , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Volumen Sistólico , Dispositivos Electrónicos Vestibles/normas , Piel
2.
Circulation ; 149(15): 1172-1182, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38410954

RESUMEN

BACKGROUND: Recent guidelines redefined exercise pulmonary hypertension as a mean pulmonary artery pressure/cardiac output (mPAP/CO) slope >3 mm Hg·L-1·min-1. A peak systolic pulmonary artery pressure >60 mm Hg during exercise has been associated with an increased risk of cardiovascular death, heart failure rehospitalization, and aortic valve replacement in aortic valve stenosis. The prognostic value of the mPAP/CO slope in aortic valve stenosis remains unknown. METHODS: In this prospective cohort study, consecutive patients (n=143; age, 73±11 years) with an aortic valve area ≤1.5 cm2 underwent cardiopulmonary exercise testing with echocardiography. They were subsequently evaluated for the occurrence of cardiovascular events (ie, cardiovascular death, heart failure hospitalization, new-onset atrial fibrillation, and aortic valve replacement) during a follow-up period of 1 year. Findings were externally validated (validation cohort, n=141). RESULTS: One cardiovascular death, 32 aortic valve replacements, 9 new-onset atrial fibrillation episodes, and 4 heart failure hospitalizations occurred in the derivation cohort, whereas 5 cardiovascular deaths, 32 aortic valve replacements, 1 new-onset atrial fibrillation episode, and 10 heart failure hospitalizations were observed in the validation cohort. Peak aortic velocity (odds ratio [OR] per SD, 1.48; P=0.036), indexed left atrial volume (OR per SD, 2.15; P=0.001), E/e' at rest (OR per SD, 1.61; P=0.012), mPAP/CO slope (OR per SD, 2.01; P=0.002), and age-, sex-, and height-based predicted peak exercise oxygen uptake (OR per SD, 0.59; P=0.007) were independently associated with cardiovascular events at 1 year, whereas peak systolic pulmonary artery pressure was not (OR per SD, 1.28; P=0.219). Peak Vo2 (percent) and mPAP/CO slope provided incremental prognostic value in addition to indexed left atrial volume and aortic valve area (P<0.001). These results were confirmed in the validation cohort. CONCLUSIONS: In moderate and severe aortic valve stenosis, mPAP/CO slope and percent-predicted peak Vo2 were independent predictors of cardiovascular events, whereas peak systolic pulmonary artery pressure was not. In addition to aortic valve area and indexed left atrial volume, percent-predicted peak Vo2 and mPAP/CO slope cumulatively improved risk stratification.


Asunto(s)
Estenosis de la Válvula Aórtica , Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Pronóstico , Ecocardiografía de Estrés/métodos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/complicaciones , Estudios Prospectivos , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/complicaciones , Gasto Cardíaco , Insuficiencia Cardíaca/complicaciones , Oxígeno
3.
Circ Res ; 133(7): 559-571, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37641938

RESUMEN

BACKGROUND: The phrase complete vagal withdrawal is often used when discussing autonomic control of the heart during exercise. However, more recent studies have challenged this assumption. We hypothesized that cardiac vagal activity increases during exercise and maintains cardiac function via transmitters other than acetylcholine. METHODS: Chronic direct recordings of cardiac vagal nerve activity, cardiac output, coronary artery blood flow, and heart rate were recorded in conscious adult sheep during whole-body treadmill exercise. Cardiac innervation of the left cardiac vagal branch was confirmed with lipophilic tracer dyes (DiO). Sheep were exercised with pharmacological blockers of acetylcholine (atropine, 250 mg), VIP (vasoactive intestinal peptide; [4Cl-D-Phe6,Leu17]VIP 25 µg), or saline control, randomized on different days. In a subset of sheep, the left cardiac vagal branch was denervated. RESULTS: Neural innervation from the cardiac vagal branch is seen at major cardiac ganglionic plexi, and within the fat pads associated with the coronary arteries. Directly recorded cardiac vagal nerve activity increased during exercise. Left cardiac vagal branch denervation attenuated the maximum changes in coronary artery blood flow (maximum exercise, control: 63.5±5.9 mL/min, n=8; cardiac vagal denervated: 32.7±5.6 mL/min, n=6, P=2.5×10-7), cardiac output, and heart rate during exercise. Atropine did not affect any cardiac parameters during exercise, but VIP antagonism significantly reduced coronary artery blood flow during exercise to a similar level to vagal denervation. CONCLUSIONS: Our study demonstrates that cardiac vagal nerve activity actually increases and is crucial for maintaining cardiac function during exercise. Furthermore, our findings show the dynamic modulation of coronary artery blood flow during exercise is mediated by VIP.


Asunto(s)
Acetilcolina , Corazón , Animales , Ovinos , Vasos Coronarios , Gasto Cardíaco , Atropina/farmacología
4.
Am J Respir Crit Care Med ; 210(5): 629-638, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526489

RESUMEN

Rationale: Blood flow rate affects mixed venous oxygenation (SvO2) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function. Objectives: To describe the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow in patients with severe acute respiratory distress syndrome receiving ECMO and controlled mechanical ventilation. Methods: Low (SvO2 target, 70-75%), intermediate (SvO2 target, 75-80%), and high (SvO2 target, >80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography. Measurements and Main Results: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs. 8.3 [5.9-9.8] vs. 7.9 [6.5-9.1] L/min; P = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs. 31 ± 6 vs. 30 ± 5 mm Hg; P < 0.001) and right ventricular stroke work index (14.2 ± 4.4 vs. 12.2 ± 3.6 vs. 11.4 ± 3.2 g × m/beat/m2; P = 0.002). Cardiac output was inversely correlated with mixed venous and arterial Po2 values (R2 = 0.257; P = 0.031; and R2 = 0.324; P = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous Po2 (R2 = 0.29; P < 0.001) and with increasing cardiac output (R2 = 0.378; P < 0.007). Measures of [Formula: see text]/[Formula: see text] mismatch did not differ between the three steps. Conclusions: In patients with severe acute respiratory distress syndrome, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Gasto Cardíaco/fisiología , Hemodinámica/fisiología , Respiración Artificial/métodos , Anciano , Circulación Pulmonar/fisiología
5.
J Physiol ; 602(10): 2227-2251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690610

RESUMEN

Passive whole-body hyperthermia increases limb blood flow and cardiac output ( Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart and Q ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions, Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart and Q ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output: Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow and Q ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmented Q ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.


Asunto(s)
Gasto Cardíaco , Hipertermia , Humanos , Masculino , Adulto , Hipertermia/fisiopatología , Gasto Cardíaco/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Flujo Sanguíneo Regional/fisiología , Fiebre/fisiopatología , Adulto Joven , Calor , Hemodinámica
6.
J Physiol ; 602(16): 3893-3907, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924564

RESUMEN

During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake ( V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output ( W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output ( Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higher W peak ${W}_{\textit{peak}}$ than Han, and a higher V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume or Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function of Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.


Asunto(s)
Ejercicio Físico , Hemodinámica , Descanso , Humanos , Masculino , Ejercicio Físico/fisiología , Tibet , Adulto , Hemodinámica/fisiología , Descanso/fisiología , Pueblo Asiatico , Adulto Joven , Consumo de Oxígeno/fisiología , Gasto Cardíaco/fisiología , Altitud , Arteria Pulmonar/fisiología , Pueblos del Este de Asia
7.
Am J Physiol Heart Circ Physiol ; 327(2): H315-H330, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819385

RESUMEN

Cardiovascular dysfunctions complicate 10-20% of pregnancies, increasing the risk for postpartum mortality. Various gestational insults, including preeclampsia are reported to be associated with adverse maternal cardiovascular outcomes. One such insult, gestational hyperandrogenism increases the risk for preeclampsia and other gestational morbidities but its impact on postpartum maternal health is not well known. We hypothesize that gestational hyperandrogenism such as testosterone (T) excess will adversely impact the maternal heart in the postpartum period. Pregnant ewes were injected with T propionate from day 30 to day 90 of gestation (term 147 days). Three months postpartum, echocardiograms, plasma cytokine profiles, cardiac morphometric, and molecular analysis were conducted [control (C) n = 6, T-treated (T) n = 7 number of animals]. Data were analyzed by two-tailed Student's t test and Cohen's effect size (d) analysis. There was a nonsignificant large magnitude decrease in cardiac output (7.64 ± 1.27 L/min vs. 10.19 ± 1.40, P = 0.22, d = 0.81) and fractional shortening in the T ewes compared with C (35.83 ± 2.33% vs. 41.50 ± 2.84, P = 0.15, d = 0.89). T treatment significantly increased 1) left ventricle (LV) weight-to-body weight ratio (2.82 ± 0.14 g/kg vs. 2.46 ± 0.08) and LV thickness (14.56 ± 0.52 mm vs. 12.50 ± 0.75), 2) proinflammatory marker [tumor necrosis factor-alpha (TNF-α)] in LV (1.66 ± 0.35 vs. 1.06 ± 0.18), 3) LV collagen (Masson's Trichrome stain: 3.38 ± 0.35 vs. 1.49 ± 0.15 and Picrosirius red stain: 5.50 ± 0.32 vs. 3.01 ± 0.23), 4) markers of LV apoptosis, including TUNEL (8.3 ± 1.1 vs. 0.9 ± 0.18), bcl-2-associated X protein (Bax)+-to-b-cell lymphoma 2 (Bcl2)+ ratio (0.68 ± 0.30 vs. 0.13 ± 0.02), and cleaved caspase 3 (15.4 ± 1.7 vs. 4.4 ± 0.38). These findings suggest that gestational testosterone excess adversely programs the maternal LV, leading to adverse structural and functional consequences in the postpartum period.NEW & NOTEWORTHY Using a sheep model of human translational relevance, this study provides evidence that excess gestational testosterone exposure such as that seen in hyperandrogenic disorders adversely impacts postpartum maternal hearts.


Asunto(s)
Periodo Posparto , Animales , Femenino , Embarazo , Ovinos , Testosterona/sangre , Función Ventricular Izquierda , Propionato de Testosterona/toxicidad , Citocinas/sangre , Citocinas/metabolismo , Gasto Cardíaco , Edad Gestacional
8.
Am J Physiol Heart Circ Physiol ; 326(5): H1131-H1137, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456848

RESUMEN

A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; ∼early reproductive maturity in humans) and aged (9 mo; ∼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.


Asunto(s)
Ecocardiografía , Corazón , Embarazo , Femenino , Humanos , Ratas , Animales , Edad Materna , Ratas Sprague-Dawley , Corazón/diagnóstico por imagen , Gasto Cardíaco
9.
Am J Physiol Heart Circ Physiol ; 327(2): H509-H517, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874616

RESUMEN

Aging is associated with a significant decline in aerobic capacity assessed by maximal exercise oxygen consumption (V̇o2max). The relative contributions of the specific V̇o2 components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A - V)O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age: 21-96 yr old; average follow-up: 12.6 yr old) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. V̇o2peak, a surrogate of V̇o2max, was used to assess aerobic capacity during upright cycle ergometry. Peak exercise left ventricular volumes, heart rate, and CO were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A - V)O2diff,peak from COpeak and V̇o2peak. In unadjusted models, V̇o2peak, (A - V)O2diff,peak, and COpeak declined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in V̇o2peak and (A - V)O2diff,peak were observed with advanced entry age but not in COpeak. The association between the declines in V̇o2peak and (A - V)O2diff,peak was stronger among those ≥50 yr old compared with their younger counterparts, but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak V̇o2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A - V)O2diff are warranted.NEW & NOTEWORTHY The age-associated decline in aerobic exercise performance over an average of 13 yr in community-dwelling healthy individuals is more closely associated with decreased peripheral oxygen utilization rather than decreased cardiac output. This association was more evident in older than younger individuals. These findings suggest that future studies with larger samples examine whether these associations vary across the age range and whether the decline in cardiac output plays a greater role earlier in life. In addition, studies focused on determinants of peripheral oxygen uptake by exercising muscle may guide the selection of preventive strategies designed to maintain physical fitness with advancing age.


Asunto(s)
Envejecimiento , Gasto Cardíaco , Consumo de Oxígeno , Humanos , Anciano , Persona de Mediana Edad , Masculino , Consumo de Oxígeno/fisiología , Femenino , Adulto , Envejecimiento/fisiología , Envejecimiento/metabolismo , Estudios Longitudinales , Anciano de 80 o más Años , Adulto Joven , Baltimore , Factores de Edad , Tolerancia al Ejercicio , Prueba de Esfuerzo
10.
Eur Respir J ; 64(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843915

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterised by poor exercise tolerance. The contribution of right ventricular (RV) diastolic function to the augmentation of cardiac output during exercise is not known. This study leverages pressure-volume (P-V) loop analysis to characterise the impact of RV diastology on poor flow augmentation during exercise in PAH. METHODS: RV P-V loops were measured in 41 PAH patients at rest and during supine bike exercise. Patients were stratified by median change in cardiac index (CI) during exercise into two groups: high and low CI reserve. Indices of diastolic function (end-diastolic elastance (E ed)) and ventricular interdependence (left ventricular transmural pressure (LVTMP)) were compared at matched exercise stages. RESULTS: Compared to patients with high CI reserve, those with low reserve exhibited lower exercise stroke volume (36 versus 49 mL·m-2; p=0.0001), with higher associated exercise afterload (effective arterial elastance (E a) 1.76 versus 0.90 mmHg·mL-1; p<0.0001), RV stiffness (E ed 0.68 versus 0.26 mmHg·mL-1; p=0.003) and right-sided pressures (right atrial pressure 14 versus 8 mmHg; p=0.002). Higher right-sided pressures led to significantly lower LV filling among the low CI reserve subjects (LVTMP -4.6 versus 3.2 mmHg; p=0.0001). Interestingly, low exercise flow reserve correlated significantly with high afterload and RV stiffness, but not with RV contractility nor RV-PA coupling. CONCLUSIONS: Patients with poor exercise CI reserve exhibit poor exercise RV afterload, stiffness and right-sided filling pressures that depress LV filling and stroke work. High afterload and RV stiffness were the best correlates to low flow reserve in PAH. Exercise unmasked significant pathophysiological PAH differences unapparent at rest.


Asunto(s)
Gasto Cardíaco , Hipertensión Arterial Pulmonar , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Hipertensión Arterial Pulmonar/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Tolerancia al Ejercicio , Función Ventricular Derecha , Prueba de Esfuerzo , Volumen Sistólico , Anciano , Ventrículos Cardíacos/fisiopatología , Ejercicio Físico/fisiología , Diástole
11.
Eur Respir J ; 64(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782468

RESUMEN

BACKGROUND: The direct Fick principle is the standard for calculating cardiac output (CO) to detect CO-dependent conditions like exercise pulmonary hypertension (ePH). Fick COarterial incorporates arterial haemoglobin (Hba) and oxygen saturation (S aO2 ) with oxygen consumption from exercise testing, while Fick COnon-arterial substitutes mixed venous haemoglobin (Hbmv) and peripheral oxygen saturation (S pO2 ) in the absence of an arterial line. The decision to employ an arterial catheter for exercise testing varies, and discrepancies in oxygen saturation and haemoglobin between arterial and non-arterial methods may lead to differences in Fick CO, potentially affecting ePH classification. METHODS: We performed a retrospective analysis of 296 consecutive invasive cardiopulmonary exercise testing (iCPET) studies comparing oxygen saturation from pulse oximetry (S pO2 ) and radial arterial (S aO2 ), Hba and Hbmv, and CO calculated with arterial (COarterial) and non-arterial (COnon-arterial) values. We assessed the risk of misclassification of pre- and post-capillary ePH and data loss due to inaccurate S pO2 . RESULTS: When considering all stages from rest to peak exercise, Hba and Hbmv demonstrated high correlation, while S pO2 and S aO2 as well as COarterial and COnon-arterial demonstrated low correlation. Data loss was significantly higher across all stages of exercise for S pO2 (n=346/1926 (18%)) compared to S aO2 (n=17/1923 (0.88%)). We found that pre- and post-capillary ePH were misclassified as COnon-arterial data (n=7/41 (17.1%) and n=2/23 (8.7%), respectively). Patients with scleroderma and/or Raynaud's (n=11/33 (33.3%)) and black patients (n=6/19 (31.6%)) had more S pO2 data loss. CONCLUSION: Reliance upon S pO2 during invasive exercise testing results in the misclassification of pre- and post-capillary ePH, and unmeasurable S pO2 for black, scleroderma and Raynaud's patients can preclude accurate exercise calculations, thus limiting the diagnostic and prognostic value of invasive exercise testing without an arterial line.


Asunto(s)
Gasto Cardíaco , Prueba de Esfuerzo , Ejercicio Físico , Hipertensión Pulmonar , Oximetría , Enfermedad de Raynaud , Humanos , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Hipertensión Pulmonar/fisiopatología , Enfermedad de Raynaud/diagnóstico , Adulto , Esclerodermia Sistémica/fisiopatología , Anciano , Saturación de Oxígeno , Consumo de Oxígeno , Hemoglobinas/análisis , Hemoglobinas/metabolismo
12.
Proc Biol Sci ; 291(2025): 20232557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889794

RESUMEN

Hyperoxia has been shown to expand the aerobic capacity of some fishes, although there have been very few studies examining the underlying mechanisms and how they vary across different exposure durations. Here, we investigated the cardiorespiratory function of yellowtail kingfish (Seriola lalandi) acutely (~20 h) and chronically (3-5 weeks) acclimated to hyperoxia (~200% air saturation). Our results show that the aerobic performance of kingfish is limited in normoxia and increases with environmental hyperoxia. The aerobic scope was elevated in both hyperoxia treatments driven by a ~33% increase in maximum O2 uptake (MO2max), although the mechanisms differed across treatments. Fish acutely transferred to hyperoxia primarily elevated tissue O2 extraction, while increased stroke volume-mediated maximum cardiac output was the main driving factor in chronically acclimated fish. Still, an improved O2 delivery to the heart in chronic hyperoxia was not the only explanatory factor as such. Here, maximum cardiac output only increased in chronic hyperoxia compared with normoxia when plastic ventricular growth occurred, as increased stroke volume was partly enabled by an ~8%-12% larger relative ventricular mass. Our findings suggest that hyperoxia may be used long term to boost cardiorespiratory function potentially rendering fish more resilient to metabolically challenging events and stages in their life cycle.


Asunto(s)
Consumo de Oxígeno , Perciformes , Animales , Perciformes/fisiología , Hiperoxia/fisiopatología , Aclimatación , Oxígeno/metabolismo , Gasto Cardíaco
13.
J Transl Med ; 22(1): 285, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493167

RESUMEN

BACKGROUND: Lactate is traditionally recognized as a by-product of anaerobic metabolism. However, lactate is a preferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investigate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion in an experimental model of human-sized pigs. METHODS: In this randomised, blinded crossover study in eight 60-kg-pigs, the pigs received infusions with one molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured CO and pulmonary pressures using a pulmonary artery catheter. A pressure-volume admittance catheter in the left ventricle was used to measure contractility, afterload, preload and work-related parameters. RESULTS: Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by  -1.0 mmHg/ml (95% CI  -2.0 to  -0.1) and systemic vascular resistance decreased by  -548 dynes/s/cm5 (95% CI  -261 to  -835). Mixed venous saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percentage points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility nor preload were observed. CONCLUSION: Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with lowered CO and should be investigated in future clinical studies.


Asunto(s)
Hemodinámica , Ácido Láctico , Animales , Gasto Cardíaco/fisiología , Estudios Cruzados , Frecuencia Cardíaca , Porcinos , Resistencia Vascular
14.
J Card Fail ; 30(2): 329-336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37871843

RESUMEN

BACKGROUND: Nonintravenous inotropic-delivery options are needed for patients with inotropic-dependent heart failure (HF) to reduce the costs, infections and thrombotic risks associated with chronic central venous catheters and home infusion services. METHODS: We developed a novel, concentrated formulation of nebulized milrinone for inhalation and evaluated the feasibility, safety and pharmacokinetic profile in a prospective, single-arm, phase I clinical trial. We enrolled 10 patients with stage D HF requiring inotropic therapy during a hospital admission for acute HF. Milrinone 60 mg/4 mL was inhaled via nebulization 3 times daily for 48 hours. The coprimary outcomes were adverse events and pharmacokinetic profiles of inhaled milrinone. Acute changes in hemodynamic parameters were secondary outcomes. RESULTS: A concentrated nebulized milrinone formulation was well tolerated, without hypotensive events, arrhythmias or inhalation-related adverse events requiring discontinuation. Nebulized milrinone produced serum concentrations in the goal therapeutic range with a median plasma milrinone trough concentration of 39 (17-66) ng/mL and a median peak concentration of 207 (134-293) ng/mL. There were no serious adverse events. From baseline to 24 hours, mean pulmonary artery saturation increased (60% ± 7%-65 ± 5%; P = 0.001), and mean cardiac index increased (2.0 ± 0.5 mL/min/1.73m2-2.5 ± 0.1 mL/min/1.73m2; P = 0.001) with nebulized milrinone. CONCLUSIONS: In a proof-of-concept study, a concentrated, nebulized milrinone formulation for inhalation was safe and produced therapeutic serum milrinone concentrations. Nebulized milrinone was associated with improved hemodynamic parameters of cardiac output in a population with advanced HF. These promising results require further investigation in a longer-term trial in patients with inotrope-dependent advanced HF.


Asunto(s)
Insuficiencia Cardíaca , Milrinona , Humanos , Milrinona/farmacología , Milrinona/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Estudios Prospectivos , Hemodinámica , Gasto Cardíaco , Cardiotónicos/uso terapéutico
15.
Anesthesiology ; 140(2): 240-250, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905995

RESUMEN

BACKGROUND: Positive end-expiratory pressure (PEEP) is commonly applied to avoid atelectasis and improve oxygenation in patients during general anesthesia but affects cardiac pressures, volumes, and loading conditions through cardiorespiratory interactions. PEEP may therefore alter stroke work, which is the area enclosed by the pressure-volume loop and corresponds to the external work performed by the ventricles to eject blood. The low-pressure right ventricle may be even more susceptible to PEEP than the left ventricle. The authors hypothesized that increasing levels of PEEP would reduce stroke work in both ventricles. METHODS: This was a prospective, observational, experimental study. Six healthy female pigs of approximately 60 kg were used. PEEP was stepwise increased from 0 to 5, 7, 9, 11, 13, 15, 17, and 20 cm H2O to cover the clinical spectrum of PEEP. Simultaneous, biventricular invasive pressure-volume loops, invasive blood pressures, and ventilator data were recorded. RESULTS: Increasing PEEP resulted in stepwise reductions in left (5,740 ± 973 vs. 2,303 ± 1,154 mmHg · ml; P < 0.001) and right (2,064 ± 769 vs. 468 ± 133 mmHg · ml; P < 0.001) ventricular stroke work. The relative stroke work reduction was similar between the two ventricles. Left ventricular ejection fraction, afterload, and coupling were preserved. On the contrary, PEEP increased right ventricular afterload and caused right ventriculo-arterial uncoupling (0.74 ± 0.30 vs. 0.19 ± 0.13; P = 0.01) with right ventricular ejection fraction reduction (64 ± 8% vs. 37 ± 7%, P < 0.001). CONCLUSIONS: A stepwise increase in PEEP caused stepwise reduction in biventricular stroke work. However, there are important interventricular differences in response to increased PEEP levels. PEEP increased right ventricular afterload leading to uncoupling and right ventricular ejection fraction decline. These findings may support clinical decision-making to further optimize PEEP as a means to balance between improving lung ventilation and preserving right ventricular function.


Asunto(s)
Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Femenino , Animales , Porcinos , Volumen Sistólico , Estudios Prospectivos , Función Ventricular Derecha/fisiología , Respiración con Presión Positiva , Gasto Cardíaco
16.
Anesthesiology ; 140(5): 1002-1015, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157435

RESUMEN

BACKGROUND: Thermodilution is unreliable in veno-venous extracorporeal membrane oxygenation (VV-ECMO). Systemic oxygenation depends on recirculation fractions and ratios of extracorporeal membrane oxygenation (ECMO) flow to cardiac output. In a prospective in vitro simulation, this study assessed the diagnostic accuracy of a modified thermodilution technique for recirculation and cardiac output. The hypothesis was that this method provided clinically acceptable precision and accuracy for cardiac output and recirculation. METHODS: Two ECMO circuits ran in parallel: one representing a VV-ECMO and the second representing native heart, lung, and circulation. Both circuits shared the right atrium. Extra limbs for recirculation and pulmonary shunt were added. This study simulated ECMO flows from 1 to 2.5 l/min and cardiac outputs from 2.5 to 3.5 l/min with recirculation fractions (0 to 80%) and pulmonary shunts. Thermistors in both ECMO limbs and the pulmonary artery measured the temperature changes induced by cold bolus injections into the arterial ECMO limb. Recirculation fractions were calculated from the ratio of the areas under the temperature curve (AUCs) in the ECMO limbs and from partitioning of the bolus volume (flow based). With known partitioning of bolus volumes between ECMO and pulmonary artery, cardiac output was calculated. High-precision ultrasonic flow probes served as reference for Bland-Altman plots and linear mixed-effect models. RESULTS: Accuracy and precision for both the recirculation fraction based on AUC (bias, -5.4%; limits of agreement, -18.6 to 7.9%) and flow based (bias, -5.9%; limits of agreement, -18.8 to 7.0%) are clinically acceptable. Calculated cardiac output for all recirculation fractions was accurate but imprecise (RecirculationAUC: bias 0.56 l/min; limits of agreement, -2.27 to 3.4 l/min; and RecirculationFLOW: bias 0.48 l/min; limits of agreement, -2.22 to 3.19 l/min). Recirculation fraction increased bias and decreased precision. CONCLUSIONS: Adapted thermodilution for VV-ECMO allows simultaneous measurement of recirculation fraction and cardiac output and may help optimize patient management with severe respiratory failure.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Termodilución/métodos , Estudios Prospectivos , Gasto Cardíaco , Pulmón
17.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045710

RESUMEN

Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.


Asunto(s)
Evolución Biológica , Gasto Cardíaco , Corazón , Peromyscus , Animales , Peromyscus/fisiología , Corazón/fisiología , Gasto Cardíaco/fisiología , Altitud , Aclimatación/fisiología , Consumo de Oxígeno/fisiología , Termogénesis/fisiología , Oxígeno/metabolismo , Aerobiosis
18.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136099

RESUMEN

The presence of cardiac shunts in ectothermic tetrapods is thought to be consistent with active vascular modulations for proper hemodynamic support. Local control of blood flow modulates tissue perfusion and thus systemic conductance (Gsys) is assumed to increase with body temperature (Tb) to accommodate higher aerobic demand. However, the general increase of Gsys presses for a higher right-to-left (R-L) shunt, which reduces arterial oxygen concentration. In contrast, Tb reduction leads to a Gsys decrease and a left-to-right shunt, which purportedly increases pulmonary perfusion and plasma filtration in the respiratory area. This investigation addressed the role of compensatory vascular adjustments in the face of the metabolic alterations caused by Tb change in the South American rattlesnake (Crotalus durissus). Cardiovascular recordings were performed in decerebrated rattlesnake preparations at 10, 20 and 30°C. The rise in Tb increased metabolic demand, and correlated with an augmentation in heart rate. Although cardiac output increased, systemic stroke volume reduced while pulmonary stroke volume remained stable. Although that resulted in a proportionally higher increase in pulmonary blood flow, the R-L shunt was maintained. While the systemic compliance of large arteries was the most relevant factor in regulating arterial systemic blood pressure, peripheral conductance of pulmonary circulation was the major factor influencing the final cardiac shunt. Such dynamic adjustment of systemic compliance and pulmonary resistance for shunt modulation has not been demonstrated before and contrasts with previous knowledge on shunt control.


Asunto(s)
Crotalus , Hemodinámica , Animales , Crotalus/fisiología , Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Temperatura , Gasto Cardíaco/fisiología , Circulación Pulmonar/fisiología , Masculino , Serpientes Venenosas
19.
Pediatr Res ; 95(5): 1335-1345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177250

RESUMEN

BACKGROUND: In the Fontan palliation for single ventricle heart disease (SVHD), pulmonary blood flow is non-pulsatile/passive, low velocity, and low shear, making viscous power loss a critical determinant of cardiac output. The rheologic properties of blood in SVHD patients are essential for understanding and modulating their limited cardiac output and they have not been systematically studied. We hypothesize that viscosity is decreased in single ventricle circulation. METHODS: We evaluated whole blood viscosity, red blood cell (RBC) aggregation, and RBC deformability to evaluate changes in healthy children and SVHD patients. We altered suspending media to understand cellular and plasma differences contributing to rheologic differences. RESULTS: Whole blood viscosity was similar between SVHD and healthy at their native hematocrits, while viscosity was lower at equivalent hematocrits for SVHD patients. RBC deformability is increased, and RBC aggregation is decreased in SVHD patients. Suspending SVHD RBCs in healthy plasma resulted in increased RBC aggregation and suspending healthy RBCs in SVHD plasma resulted in lower RBC aggregation. CONCLUSIONS: Hematocrit corrected blood viscosity is lower in SVHD vs. healthy due to decreased RBC aggregation and higher RBC deformability, a viscous adaptation of blood in patients whose cardiac output is dependent on minimizing viscous power loss. IMPACT: Patients with single ventricle circulation have decreased red blood cell aggregation and increased red blood cell deformability, both of which result in a decrease in blood viscosity across a large shear rate range. Since the unique Fontan circulation has very low-shear and low velocity flow in the pulmonary arteries, blood viscosity plays an increased role in vascular resistance, therefore this work is the first to describe a novel mechanism to target pulmonary vascular resistance as a modifiable risk factor. This is a novel, modifiable risk factor in this patient population.


Asunto(s)
Viscosidad Sanguínea , Agregación Eritrocitaria , Deformación Eritrocítica , Procedimiento de Fontan , Humanos , Niño , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/fisiopatología , Masculino , Femenino , Hematócrito , Corazón Univentricular/cirugía , Corazón Univentricular/fisiopatología , Preescolar , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/anomalías , Gasto Cardíaco , Adolescente , Eritrocitos
20.
Curr Opin Pulm Med ; 30(5): 451-458, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958564

RESUMEN

PURPOSE OF REVIEW: In this review, we provide an overview of the prognostic implications of exPH in patients with various common cardiac and pulmonary diseases. RECENT FINDINGS: Exercise pulmonary hypertension (exPH) has been recently re-introduced in the current European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. Accordingly, exPH is defined as a mean pulmonary arterial pressure (mPAP)/cardiac output ( CO ) slope greater than 3 mmHg/l/min. Key considerations for this re-introduction included increasing understanding on normal pulmonary hemodynamics during exercise and the broadly available evidence on the association of an abnormal mPAP/ CO slope with poor survival in the general population and in different disease entities. SUMMARY: Exercise (patho-)physiology has opened a new field for clinical research facilitating recognition of cardiovascular and pulmonary vascular diseases in an early stage. Such early recognition with significant prognostic and possibly therapeutic relevance, but being undetectable at rest, makes exercise pulmonary hemodynamics particularly interesting for common diseases, such as valvular heart disease, left heart disease, and chronic pulmonary disease.


Asunto(s)
Ejercicio Físico , Hipertensión Pulmonar , Humanos , Pronóstico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico , Ejercicio Físico/fisiología , Hemodinámica/fisiología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/diagnóstico , Cardiopatías/fisiopatología , Gasto Cardíaco/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA