Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(5): 982-997.e16, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712873

RESUMEN

Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.


Asunto(s)
Linfocitos/inmunología , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/microbiología , Animales , Bacterias/metabolismo , Citocinas/metabolismo , Epitelio/inmunología , Folículo Piloso/metabolismo , Folículo Piloso/microbiología , Inmunidad Innata , Interleucina-7/metabolismo , Linfocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/inmunología , Receptores CCR6/metabolismo , Receptores Notch/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Glándulas Sebáceas/inmunología , Piel/metabolismo , Fenómenos Fisiológicos de la Piel , Simbiosis , Linfopoyetina del Estroma Tímico
2.
J Biol Chem ; 300(7): 107442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838779

RESUMEN

Sebaceous glands (SG) and their oily secretion (sebum) are indispensable for maintaining skin structure and function, and their deregulation causes skin disorders including but not limited to acne. Recent studies also indicate that sebum may have important immunomodulatory activities and may influence whole-body energy metabolism. However, the progressive transcriptional changes of sebocytes that lead to sebum production have never been characterized in detail. Here, we exploited the high cellular resolution provided by sebaceous hyperplasia and integrated spatial transcriptomics, pseudo time analysis, RNA velocity, and functional enrichment to map the landscape of sebaceous differentiation. Our results were validated by comparison with published SG transcriptome data and further corroborated by assessing the protein expression pattern of a subset of the transcripts in the public repository Human Protein Atlas. Departing from four sebocyte differentiation stages generated by unsupervised clustering, we demonstrate consecutive modulation of cellular functions associable with specific gene sets, from cell proliferation and oxidative phosphorylation via lipid synthesis to cell death. Both validation methods confirmed the biological significance of our results. Our report is complemented by a freely available and browsable online tool. Our data provide the first high-resolution spatial portrait of the SG transcriptional landscape and deliver starting points for experimentally assessing novel candidate molecules for regulating SG homeostasis in health and disease.


Asunto(s)
Diferenciación Celular , Glándulas Sebáceas , Humanos , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/citología , Transcriptoma , Sebo/metabolismo , Transcripción Genética
3.
J Allergy Clin Immunol ; 154(2): 480-491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38157943

RESUMEN

BACKGROUND: The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES: This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS: RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS: This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS: This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.


Asunto(s)
Citocinas , Interleucina-13 , Interleucina-4 , Glándulas Sebáceas , Sebo , Linfocitos T , Linfopoyetina del Estroma Tímico , Citocinas/metabolismo , Sebo/metabolismo , Sebo/inmunología , Interleucina-13/metabolismo , Interleucina-13/inmunología , Interleucina-4/metabolismo , Interleucina-4/inmunología , Animales , Glándulas Sebáceas/inmunología , Glándulas Sebáceas/metabolismo , Linfocitos T/inmunología , Humanos , Ratones , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Lipogénesis/inmunología , Ratones Endogámicos C57BL
4.
BMC Genomics ; 25(1): 137, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310227

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has been widely applied to dissect cellular heterogeneity in normal and diseased skin. Sebaceous glands, essential skin components with established functions in maintaining skin integrity and emerging roles in systemic energy metabolism, have been largely neglected in scRNA-seq studies. METHODS: Departing from mouse and human skin scRNA-seq datasets, we identified gene sets expressed especially in sebaceous glands with the open-source R-package oposSOM. RESULTS: The identified gene sets included sebaceous gland-typical genes as Scd3, Mgst1, Cidea, Awat2 and KRT7. Surprisingly, however, there was not a single overlap among the 100 highest, exclusively in sebaceous glands expressed transcripts in mouse and human samples. Notably, both species share a common core of only 25 transcripts, including mitochondrial and peroxisomal genes involved in fatty acid, amino acid, and glucose processing, thus highlighting the intense metabolic rate of this gland. CONCLUSIONS: This study highlights intrinsic differences in sebaceous lipid synthesis between mice and humans, and indicates an important role for peroxisomal processes in this context. Our data also provides attractive starting points for experimentally addressing novel candidates regulating sebaceous gland homeostasis.


Asunto(s)
Glándulas Sebáceas , Piel , Humanos , Ratones , Animales , Glándulas Sebáceas/metabolismo , Piel/metabolismo , Perfilación de la Expresión Génica , Homeostasis , Aminoácidos/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521750

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin dryness, inflammation, and itch. A major hallmark of AD is an elevation of the immune cytokines IL-4 and IL-13. These cytokines lead to skin barrier disruption and lipid abnormalities in AD, yet the underlying mechanisms are unclear. Sebaceous glands are specialized sebum-producing epithelial cells that promote skin barrier function by releasing lipids and antimicrobial proteins to the skin surface. Here, we show that in AD, IL-4 and IL-13 stimulate the expression of 3ß-hydroxysteroid dehydrogenase 1 (HSD3B1), a key rate-limiting enzyme in sex steroid hormone synthesis, predominantly expressed by sebaceous glands in human skin. HSD3B1 enhances androgen production in sebocytes, and IL-4 and IL-13 drive lipid abnormalities in human sebocytes and keratinocytes through HSD3B1. Consistent with our findings in cells, HSD3B1 expression is elevated in the skin of AD patients and can be restored by treatment with the IL-4Rα monoclonal antibody, Dupilumab. Androgens are also elevated in a mouse model of AD, though the mechanism in mice remains unclear. Our findings illuminate a connection between type 2 immunity and sex steroid hormone synthesis in the skin and suggest that abnormalities in sex steroid hormone synthesis may underlie the disrupted skin barrier in AD. Furthermore, targeting sex steroid hormone synthesis pathways may be a therapeutic avenue to restoring normal skin barrier function in AD patients.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Piel/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular , Citocinas/metabolismo , Dermatitis Atópica/metabolismo , Modelos Animales de Enfermedad , Células HaCaT , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Lípidos , Masculino , Ratones , Ratones Endogámicos BALB C , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/metabolismo , Piel/efectos de los fármacos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo
6.
Biochem Biophys Res Commun ; 667: 146-152, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37229823

RESUMEN

BACKGROUND: Acne is associated with the excessive production of sebum, a complex mixture of lipids, in the sebaceous glands. The transcription factor Krüppel-like factor 4 (KLF4) plays an important role in skin morphogenesis, but its role in sebum production by sebocytes is not well known. PURPOSE: In this study, we investigated the possible action mechanism of KLF4 during calcium-induced lipogenesis in immortalized human sebocytes. METHODS: Sebocytes were treated with calcium, and lipid production was confirmed by thin-layer chromatography (TLC) and Oil Red O staining. To investigate the effect of KLF4, sebocytes were transduced with the KLF4-overexpressing adenovirus, and then lipid production was evaluated. RESULTS: Calcium treatment resulted in increased sebum production in terms of squalene synthesis in sebocytes. In addition, calcium increased the expression of lipogenic regulators such as sterol-regulatory element binding protein 1 (SREBP1), sterol-regulatory element binding protein 2 (SREBP2), and stearoyl-CoA desaturase (SCD). Similarly, the expression of KLF4 was increased by calcium in sebocytes. To investigate the effect of KLF4, we overexpressed KLF4 in sebocytes using recombinant adenovirus. As a result, KLF4 overexpression increased the expression of SREBP1, SREBP2, and SCD. Parallel to this result, lipid production was also increased by KLF4 overexpression. Chromatin immunoprecipitation revealed the binding of KLF4 to the SREBP1 promoter, indicating that KLF4 may directly regulate the expression of lipogenic regulators. CONCLUSION: These results suggest that KLF4 is a novel regulator of lipid production in sebocytes.


Asunto(s)
Calcio , Factor 4 Similar a Kruppel , Humanos , Calcio/metabolismo , Células Cultivadas , Lípidos , Lipogénesis , Glándulas Sebáceas/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Esteroles/metabolismo
7.
Mod Pathol ; 36(4): 100101, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788082

RESUMEN

The accurate diagnosis of skin adnexal neoplasms is sometimes challenging but is necessary because medical management and follow-up may differ between tumors. GATA6 transcription factor has been identified as a new marker of the upper folliculosebaceous compartment (lower infundibulum, junctional zone and isthmus, and upper sebaceous gland) in the human skin. We aimed to determine the diagnostic accuracy of GATA6 immunostaining to diagnose sebaceous tumors compared with that to diagnose other adnexal and nonadnexal cutaneous neoplasms. We conducted a retrospective, evaluator-nonblinded study comparing the reference standard (diagnosis by an expert dermatopathologist) with GATA6 immunostaining to identify sebaceous tumors in a cohort containing 234 different tumors. The GATA6 expression score was significatively higher in sebaceous than that in nonsebaceous tumors. In addition, tumors originating from the upper hair follicle showed positive results for GATA6 staining; however, they showed lower GATA6 expression scores. Detection of sebaceous tumors using GATA6 positivity had a sensitivity of 95.7% (95% CI, 85.8-99.2), specificity of 80.8% (95% CI, 74.5-85.8), positive predictive value of 55.6% (95% CI, 44.7-65.9), and negative predictive value of 98.7% (95% CI, 95.4-99.8). GATA6 showed similar sensitivity to adipophilin, the reference marker; however, the specificity of GATA6 was higher, as observed in a cohort of 106 tumors enriched in squamous cell carcinomas with clear-cell histology. In addition, GATA6 positivity was assessed in 39 sebaceous carcinomas and compared with epithelial membrane antigen (EMA), CK7, and androgen receptor (AR) staining results. Although CK7 staining displayed lower diagnostic performances, GATA6 staining showed comparable results as EMA and AR. Finally, we found GATA6 expression in skin metastases of gastrointestinal origin, whereas GATA6 was absent in metastases originating from breast or lung cancers. Overall, our work identified GATA6 immunostaining as a new diagnostic tool for sebaceous tumors.


Asunto(s)
Neoplasias de las Glándulas Sebáceas , Neoplasias Cutáneas , Humanos , Estudios Retrospectivos , Neoplasias de las Glándulas Sebáceas/diagnóstico , Piel/patología , Neoplasias Cutáneas/patología , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/patología , Factor de Transcripción GATA6
8.
Am J Pathol ; 192(11): 1546-1558, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948081

RESUMEN

Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. This study shows the direct effects of mitochondrial dysfunction on SG morphology and function. A mitochondrial DNA (mtDNA) depleter mouse was used as a model for introducing mitochondrial dysfunction in the whole animal. The effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands were characterized. The mtDNA depleter mice showed gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. Increased sebocyte proliferation and aberrant expression of stem cell markers were observed. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. They suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.


Asunto(s)
Glándulas Sebáceas , Piel , Humanos , Ratones , Animales , Glándulas Sebáceas/metabolismo , Piel/metabolismo , Mitocondrias , Envejecimiento , ADN Mitocondrial/genética
9.
Metabolomics ; 19(4): 21, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964290

RESUMEN

INTRODUCTION: Sebum-based metabolomics (a subset of "sebomics") is a developing field that involves the sampling, identification, and quantification of metabolites found in human sebum. Sebum is a lipid-rich oily substance secreted by the sebaceous glands onto the skin surface for skin homeostasis, lubrication, thermoregulation, and environmental protection. Interest in sebomics has grown over the last decade due to its potential for rapid analysis following non-invasive sampling for a range of clinical and environmental applications. OBJECTIVES: To provide an overview of various sebum sampling techniques with their associated challenges. To evaluate applications of sebum for clinical research, drug monitoring, and human biomonitoring. To provide a commentary of the opportunities of using sebum as a diagnostic biofluid in the future. METHODS: Bibliometric analyses of selected keywords regarding skin surface analysis using the Scopus search engine from 1960 to 2022 was performed on 12th January 2023. The published literature was compartmentalised based on what the work contributed to in the following areas: the understanding about sebum, its composition, the analytical technologies used, or the purpose of use of sebum. The findings were summarised in this review. RESULTS: Historically, about 15 methods of sampling have been used for sebum collection. The sample preparation approaches vary depending on the analytes of interest and are summarised. The use of sebum is not limited to just skin diseases or drug monitoring but also demonstrated for other systemic disease. Most of the work carried out for untargeted analysis of metabolites associated with sebum has been in the recent two decades. CONCLUSION: Sebum has a huge potential beyond skin research and understanding how one's physiological state affects or reflects on the skin metabolome via the sebaceous glands itself or by interactions with sebaceous secretion, will open doors for simpler biomonitoring. Sebum acts as a sink to environmental metabolites and has applications awaiting to be explored, such as biosecurity, cross-border migration, localised exposure to harmful substances, and high-throughput population screening. These applications will be possible with rapid advances in volatile headspace and lipidomics method development as well as the ability of the metabolomics community to annotate unknown species better. A key issue with skin surface analysis that remains unsolved is attributing the source of the metabolites found on the skin surface before meaningful biological interpretation.


Asunto(s)
Metabolómica , Sebo , Humanos , Glándulas Sebáceas/metabolismo
10.
Exp Dermatol ; 32(6): 808-821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843338

RESUMEN

Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.


Asunto(s)
Ácidos Grasos , Estearatos , Humanos , Ácidos Grasos/metabolismo , Estearatos/metabolismo , Glándulas Sebáceas/metabolismo , Citocinas/metabolismo , Palmitatos/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Ácido Graso Desaturasas/metabolismo
11.
Exp Dermatol ; 32(10): 1717-1724, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37401827

RESUMEN

As near-infrared radiation (NIR), which is a composition of sunlight with an 780-1400 nm wavelength, is associated with skin aging such as wrinkles and slacks, the biological actions of NIR with high dermal penetration remains unclear. In the present study, we found that NIR irradiation (40 J/cm2 ) at different levels of irradiance (95-190 mW/cm2 ) using a laboratory device with a xenon flash lamp (780-1700 nm) caused sebaceous gland enlargement concomitantly with skin thickening in the auricle skin of hamsters. The sebaceous gland enlargement resulted from the proliferation of sebocytes due to an increase in the number of proliferating cell nuclear antigen (PCNA)- and lamin B1-positive cells in vivo. In addition, NIR irradiation transcriptionally augmented the production of epidermal growth factor receptor (EGFR) accompanied with an increase in the reactive oxygen species (ROS) level in hamster sebocytes in vitro. Furthermore, the administration of hydrogen peroxide increased the level of EGFR mRNA in the sebocytes. Therefore, these results provide novel evidence that NIR irradiation causes the hyperplasia of sebaceous glands in hamsters by mechanisms in which EGFR production is transcriptionally augmented through ROS-dependent pathways in sebocytes.


Asunto(s)
Receptores ErbB , Rayos Infrarrojos , Enfermedades de las Glándulas Sebáceas , Glándulas Sebáceas , Animales , Cricetinae , Receptores ErbB/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Glándulas Sebáceas/etiología , Enfermedades de las Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/efectos de la radiación , Piel/metabolismo , Piel/efectos de la radiación , Rayos Infrarrojos/efectos adversos
12.
Cell Mol Biol Lett ; 28(1): 60, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501148

RESUMEN

BACKGROUND: Sebaceous glands (SGs) synthesize and secret sebum to protect and moisturize the dermal system via the complicated endocrine modulation. Dysfunction of SG are usually implicated in a number of dermal and inflammatory diseases. However, the molecular mechanism behind the differentiation, development and proliferation of SGs is far away to fully understand. METHODS: Herein, the rat volar and mammary tissues with abundant SGs from female SD rats with (post-natal day (PND)-35) and without puberty onset (PND-25) were arrested, and conducted RNA sequencing. The protein complex of Neuropeptide Y receptor Y2 (NPY2R)/NPY5R/Nuclear factor of activated T cells 1 (NFATc1) was performed by immunoprecipitation, mass spectrum and gel filtration. Genome-wide occupancy of NFATc1 was measured by chromatin immunoprecipitation sequencing. Target proteins' expression and localization was detected by western blot and immunofluorescence. RESULTS: NPY2R gene was significantly up-regulated in volar and mammary SGs of PND-25. A special protein complex of NPY2R/NPY5R/NFATc1 in PND-25. NFATc1 was dephosphorylated and activated, then localized into nucleus to exert as a transcription factor in volar SGs of PND-35. NFATc1 was especially binding at enhancer regions to facilitate the distal SG and sebum related genes' transcription. Dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) contributed to NFATc1 phosphorylation in PND-25, and inactivated of DYRK1A resulted in NFATc1 dephosphorylation and nuclear localization in PND-35. CONCLUSIONS: Our findings unmask the new role of NPY2R/NFATc1/DYRK1A in pubertal SG, and are of benefit to advanced understanding the molecular mechanism of SGs' function after puberty, and provide some theoretical basis for the treatment of acne vulgaris from the perspective of hormone regulation.


Asunto(s)
Acné Vulgar , Glándulas Sebáceas , Animales , Femenino , Ratas , Acné Vulgar/metabolismo , Factores de Transcripción NFI/metabolismo , Ratas Sprague-Dawley , Glándulas Sebáceas/metabolismo , Sebo/metabolismo , Quinasas DyrK
13.
Int J Cosmet Sci ; 45(1): 62-72, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36324215

RESUMEN

BACKGROUND: Botanical ingredients are widely used in hair- and skin-care products. However, few studies have investigated the effectiveness of botanical products on counteracting sebum synthesis and secretion. OBJECTIVE: To investigate the composition of Lotus corniculatus seed extract (LC) and its potential inhibition of lipogenesis in SZ95 sebocytes and oily human skin. METHODS: The active components of LC solutions were identified by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). The in vitro effects of LC were evaluated using SZ95 cells treated with linoleic acid (LA) and dihydrotestosterone (DHT) and incubated with LCs for 24 h and 72 h. Lipogenesis was assessed by Oil Red O and Nile Red staining of the cells. In vivo effects were assessed on 30 subjects with oily skin who were enrolled in a randomized, blank-controlled trial and were treated with LC solution for 6 h and 4 weeks. The skin sebum contents and area on the forehead and cheeks were evaluated using a Sebumeter SM815 and Sebfix sebutape with Visioscan VC98. In addition, VISIA was used to collect half-face photos for analysis. RESULTS: A novel active molecule, 5'-o-rhamnosyl uridine, was identified in LC. LC exhibited a dose-dependent inhibitory effect on LA and DHT-induced lipid synthesis. When 5% LC was applied for 3 h, the skin sebum contents and area were significantly reduced compared with the vehicle control, with an obvious reduction after 6 h. Continued use of the serum containing 5% LC for 4 weeks resulted in a significant reduction in the skin sebum contents and area. No adverse reactions were reported during the study. CONCLUSIONS: Topical application of LC resulted in an immediate and long-lasting reduction of the sebum contents and area of oily human skin by reducing sebaceous lipogenesis through the LA and DHT pathways. This indicates the potential of LC as a new biological treatment for oily skin.


CONTEXTE: Les ingrédients végétaux sont largement utilisés dans les produits de soins des cheveux et de la peau. Cependant, peu d'études ont examiné l'efficacité des produits végétaux dans l'inhibition de la synthèse et de la sécrétion de sébum. OBJECTIF: Étudier les composants de l'extrait de graines de lotus (LC) et son effet inhibiteur potentiel sur la lipogenèse des cellules sébacées SZ95 et de la peau grasse. MÉTHODES: Les composants actifs de la solution LC ont été identifiés par chromatographie liquide à haute performance (HPLC) et par résonance magnétique nucléaire (NMR). Les effets de la LC in vitro ont été évalués à l'aide de cellules SZ95 traitées à l'acide linoléique (LA) et à la dihydrotestostérone (DHT) et incubées avec la LC pendant 24 et 72 heures. Les effets in vivo ont été évalués chez 30 sujets à peau grasse qui ont participé à un essai contrôlé randomisé à blanc et qui ont été traités avec une solution de LC pendant 6 heures et 4 semaines. Le sebumeter SM815 et le sebfix sebutape et le visioscan VC98 ont été utilisés pour évaluer la teneur en sébum et la surface de la peau sur le front et les joues. De plus, des photos de demi - visage ont été recueillies pour analyse à l'aide de VISIA. RÉSULTATS: Une nouvelle molécule active, 5'-o-rhamnosyluridine, a été identifiée dans la LC. La LC a un effet inhibiteur dose - dépendant sur la synthèse lipidique induite par LA et DHT. La teneur et la surface du sébum cutané ont été significativement diminuées par rapport à celles du support photographique après 3 heures d'application de 5% de LC, et significativement diminuées après 6 heures. L'utilization de sérum contenant 5% de LC pendant quatre semaines consécutives a entraîné une réduction significative de la teneur en sébum et de la surface de la peau. Aucun effet indésirable n'a été signalé au cours de l'étude. CONCLUSION: L'application topique de LC peut réduire la production de sébum par les voies LA et DHT, ce qui réduit immédiatement et durablement la teneur en sébum et la surface de la peau huileuse humaine. Cela démontre le potentiel de la LC en tant que nouveau traitement biologique de la peau huileuse.


Asunto(s)
Lotus , Sebo , Humanos , Sebo/metabolismo , Glándulas Sebáceas/metabolismo , Lipogénesis/fisiología , Aceites , Extractos Vegetales/farmacología
14.
Glycobiology ; 32(1): 73-82, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-34791227

RESUMEN

Enhanced sebocyte proliferation is associated with the pathogenesis of human skin diseases related to sebaceous gland hyperfunction and androgens, which are known to induce sebocyte proliferation, are key mediators of this process. Galectin-12, a member of the ß-galactoside-binding lectin family that is preferentially expressed by adipocytes and functions as an intrinsic negative regulator of lipolysis, has been shown to be expressed by human sebocytes. In this study, we identified galectin-12 as an important intracellular regulator of sebocyte proliferation. Galectin-12 knockdown in the human SZ95 sebocyte line suppressed cell proliferation, and its overexpression promoted cell cycle progression. Inhibition of galectin-12 expression reduced the androgen-induced SZ95 sebocyte proliferation and growth of sebaceous glands in mice, respectively. The mRNA expression of the key cell cycle regulators cyclin A1 (CCNA1) and cyclin-dependent kinase 2CDK2 was reduced in galectin-12 knockdown SZ95 sebocytes, suggesting a pathway of galectin-12 regulation of sebocyte proliferation. Further, galectin-12 enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and transcriptional activity in SZ95 sebocytes, consistent with our previous studies in adipocytes. Rosiglitazone, a PPARγ ligand, induced CCNA1 levels, suggesting that galectin-12 may upregulate CCNA1 expression via PPARγ. Our findings suggest the possibility of targeting galectin-12 to treat human sebaceous gland hyperfunction and androgen-associated skin diseases.


Asunto(s)
Ciclina A1 , Glándulas Sebáceas , Animales , Ciclo Celular/genética , Proliferación Celular , Ciclina A1/metabolismo , Quinasa 2 Dependiente de la Ciclina , Galectinas/genética , Galectinas/metabolismo , Ratones , Glándulas Sebáceas/metabolismo
15.
Exp Dermatol ; 30(4): 472-478, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33025661

RESUMEN

The emergence of hair is a defining event during mammalian skin development, but the cellular mechanisms leading to the opening of the hair follicle canal remain poorly characterized. Our previous studies have shown that early hair buds possess a central column of differentiated keratinocytes expressing Keratin 79 (K79), which marks the future hair follicle opening. Here, we report that during late embryogenesis and early postnatal development, K79+ cells at the distal tips of these columns downregulate E-cadherin, change shape, recede and undergo cell death. These changes likely occur independently of sebaceous glands and the growing hair shaft, and serve to create an orifice for hair to subsequently emerge. Defects in this process may underlie phenomena such as ingrown hair or may potentially contribute to upper hair follicle pathologies including acne, hidradenitis suppurativa and infundibular cysts.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Queratinas/metabolismo , Glándulas Sebáceas/metabolismo , Fenómenos Fisiológicos de la Piel , Animales , Ratones , Ratones Endogámicos C57BL
16.
J Immunol ; 202(6): 1767-1776, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737272

RESUMEN

The regulation of cutaneous inflammatory processes is essential for the human skin to maintain homeostasis in the presence of the dense communities of resident microbes that normally populate this organ. Forming the hair follicle-associated sebaceous gland, sebocytes are specialized lipid-producing cells that can release inflammatory mediators. Cytokine and chemokine expression by pilosebaceous epithelial cells (i.e., sebocytes and follicular keratinocytes) has been proposed to contribute to the common human skin disease acne vulgaris. The underlying mechanisms that drive inflammatory gene expression in acne-involved pilosebaceous epithelial cells are still unknown because almost all sebaceous follicles contain dense concentrations of bacteria yet only some show an inflammatory reaction. In this study, we hypothesized that metabolites from the abundant skin-resident microbe Propionibacterium acnes can influence cytokine expression from human sebocytes. We show that short-chain fatty acids produced by P. acnes under environmental conditions that favor fermentation will drive inflammatory gene expression from sebocytes. These molecules are shown to influence sebocyte behavior through two distinct mechanisms: the inhibition of histone deacetylase (HDAC) activity and the activation of fatty acid receptors. Depletion of HDAC8 and HDAC9 in human sebocytes resulted in an enhanced cytokine response to TLR-2 activation that resembled the transcriptional profile of an acne lesion. These data provide a new insight into the regulation of inflammatory gene expression in the skin, further characterize the contribution of sebocytes to epidermal immunity, and demonstrate how changes in the metabolic state of the skin microbiome can promote inflammatory acne.


Asunto(s)
Células Epiteliales/metabolismo , Ácidos Grasos Volátiles/metabolismo , Regulación de la Expresión Génica/fisiología , Propionibacteriaceae/metabolismo , Glándulas Sebáceas/metabolismo , Acné Vulgar/inmunología , Acné Vulgar/metabolismo , Línea Celular , Epigénesis Genética , Células Epiteliales/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Glándulas Sebáceas/inmunología , Piel/inmunología , Piel/metabolismo , Piel/microbiología
17.
Dermatology ; 237(1): 131-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32088721

RESUMEN

BACKGROUND: Excessive sebum is produced by specialized cells called sebocytes and is considered a cause or consequence of acne, sebaceous cysts, hyperplasia, and sebaceous adenoma. OBJECTIVE: To report changes in lipid accumulation in human sebocytes under hypoxia, which occurs under conditions of seborrhea. METHODS: Sebocytes from the immortalized human gland cell line SZ95 were cultured under conditions of hypoxia for 48 h; lipid formation was confirmed by Nile red and Oil Red O staining. To investigate whether HIF-1α plays a role in lipid accumulation, SZ95 cells transfected or treated with dimethyloxalylglycine (DMOG) were assessed by Nile red. For protein expression of the sterol regulatory element-binding protein-1 (SREBP-1) and perilipin 2 (PLIN2), Western blot analysis was performed. Differentially expressed genes (DEGs) in SZ95 sebocytes under hypoxia were revealed by RNA-Seq analyses, and the statistical significance of the correlation between hypoxic and acne/non-acne skin was evaluated using gene set enrichment analysis. RESULTS: Hypoxia induces lipid accumulation in SZ95 sebocytes. In addition, the levels of SREBP-1 and PLIN2 were regulated by HIF-1α in SZ95 sebocytes under hypoxia. RNA-Seq analyses of DEGs in SZ95 sebocytes under hypoxia revealed 256 DEGs, including several lipid droplet-associated genes. DEGs between acne and non-acne skin are significantly enriched in hypoxia gene sets. We also detected 93 differentially expressed inflammatory mediators. CONCLUSIONS: To the best of our knowledge, this study is the first to show that a hypoxic microenvironment can increase lipogenesis and provides a link between seborrhea and inflammation.


Asunto(s)
Acné Vulgar/metabolismo , Hipoxia/complicaciones , Metabolismo de los Lípidos/fisiología , Perilipina-2/metabolismo , Glándulas Sebáceas/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Acné Vulgar/patología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Línea Celular , Humanos , Lipogénesis , Glándulas Sebáceas/metabolismo , Sebo
18.
Dermatology ; 237(5): 792-796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33091909

RESUMEN

BACKGROUND: Despite their widespread clinical use in both acne vulgaris and rosacea, the effects of tetracyclines on sebocytes have not been investigated until now. Sebaceous glands are central to the pathogenesis of acne and may be important in the development of rosacea. OBJECTIVE: The aim of this study was to assess the effects of doxycycline on the immortalized SZ95 sebaceous gland cell line as a model for understanding possible effectiveness on the sebaceous glands in vivo. METHODS: The effects of doxycycline on SZ95 sebocyte numbers, viability, and lipid content as well as its effects on the mRNA levels of peroxisome proliferator-activated receptors α and γ, in comparison to the peroxisome proliferator-activated receptor γ agonist troglitazone, were investigated. RESULTS: Doxycycline reduced the cell number and increased the lipid content of SZ95 sebocytes in vitro after 2 days of treatment. These doxycycline effects may be explained by an upregulation of peroxisome proliferator-activated receptor γ mRNA levels at 12 and 24 h, whereas troglitazone already upregulated peroxisome proliferator-activated receptor γ levels after 6 h. Both compounds did not influence peroxisome proliferator-activated receptor α mRNA levels. CONCLUSION: These new findings illustrate a previously unknown effect of doxycycline on sebocytes, which may be relevant to their modulation of disorders of the pilosebaceous unit, such as acne vulgaris and rosacea.


Asunto(s)
Antibacterianos/farmacología , Diferenciación Celular/efectos de los fármacos , Doxiciclina/farmacología , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/patología , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Metabolismo de los Lípidos , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Glándulas Sebáceas/metabolismo
19.
J Eur Acad Dermatol Venereol ; 35(2): 493-501, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33131141

RESUMEN

BACKGROUND: The macrophage-activating lipopeptide-2 (MALP-2) activates cells carrying a functional Toll-like receptor (TLR)-2/6. Human sebocytes express functional TLR-2, TLR-4 and CD14. Upregulation of stearoyl-CoA desaturase (SCD) and fatty acid desaturase-2 (FADS2) expression induces pro-inflammatory sebaceous activity. On the other hand, corticotropin-releasing hormone (CRH) is likely to serve as an autocrine stress hormone in human sebocytes. In addition to its antiproliferative, lipogenetic and androgen-activating functions, CRH exhibits a pro-inflammatory action and its expression is upregulated in acne-involved sebaceous glands. OBJECTIVE: Determination of the pro-inflammatory function of MALP-2 and CRH and clarification of the option that MALP-2 and/or CRH activity on human sebocytes might be mediated through SCD and/or FADS2. METHODS: SZ95 sebocytes were treated with MALP-2, CRH and the SCD inhibitor/ligand FPCA. SCD, FADS2, TLR-2 mRNA and protein levels and IL-6 and IL-8 secretion were investigated. Intracellular CRH levels were assessed under treatment with CRH, MALP-2, linoleic acid and arachidonic acid. Phorbol 12-myristate 13-acetate and dexamethasone served as positive and negative controls, respectively. RESULTS: MALP-2 upregulated SCD, FADS2, TLR-2 mRNA and protein levels and IL-6 and IL-8 secretion from SZ95 sebocytes. Co-incubation of SZ95 sebocytes with MALP-2/FPCA did not affect the MALP-2-induced SCD mRNA upregulation but reduced FADS2 mRNA levels and inhibited IL-8 secretion. CRH induced an early, low-level SCD and FADS2 upregulation and TLR-2 and IL-8 secretion. High intracellular CRH concentrations could be detected early after CRH treatment and persisted up to 24 h. MALP-2 stimulated intracellular CRH levels. CONCLUSIONS: MALP-2 stimulates the inflammatory signalling in human sebocytes through SCD and FADS2 activation. Inhibition of FADS2 mRNA levels and IL-8 secretion through MALP-2/FCPA co-incubation and diminution of fatty acid unsaturation might lead to a reduction of pro-inflammatory sebaceous lipids. CRH upregulates inflammatory signalling via the SCD/FADS2 pathway, and MALP-2 selectively enhances CRH levels in human sebocytes.


Asunto(s)
Hormona Liberadora de Corticotropina , Ácido Graso Desaturasas/metabolismo , Lipopéptidos , Glándulas Sebáceas/citología , Estearoil-CoA Desaturasa , Humanos , Glándulas Sebáceas/metabolismo , Estearoil-CoA Desaturasa/genética
20.
J Drugs Dermatol ; 20(1): 49-54, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400411

RESUMEN

BACKGROUND: Intradermal injections of botulinum toxin have been reported to improve sebum secretion, facial skin laxity, and facial pores. However, the effects of Incobotulinumtoxin-A for these indications have not been reported. OBJECTIVE: To evaluate the efficacy of Incobotulinumtoxin-A for the improvement of sebum secretion, face laxity, and facial pores. MATERIALS AND METHODS: This single-center retrospective study included patients treated with Incobotulinumtoxin-A to improve facial skin laxity, sebum secretion, and facial pores. The microdroplet injection protocol included injection points on the lateral face, anterior medial cheek, mandibular line, depressor anguli oris points, mid-glabella area, and chin. Outcomes were measured using a Sebumeter and three-dimensional scanner and were evaluated by facial laxity ratings and the Global Aesthetic Improvement Scale. RESULTS: Twenty patients were included in the analysis. Sebum secretion, mandibular length, facial pores, and facial laxity ratings were improved at 1 week and results were sustained through 12 weeks. All outcomes showed maximum improvement after 4 weeks. Evaluation using the Global Aesthetic Improvement Scale showed that all subjects reported at least a score of 2 (improved) after 4 weeks. CONCLUSION: This study showed that intradermal injection with Incobotulinumtoxin-A could be effective for face lifting, reduced sebum production, and improved facial pores. J Drugs Dermatol. 2021;20(1):49-54. doi:10.36849/JDD.5616.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Ritidoplastia/métodos , Glándulas Sebáceas/efectos de los fármacos , Piel/efectos de los fármacos , Adulto , Estética , Cara , Femenino , Humanos , Inyecciones Intradérmicas/métodos , Masculino , Estudios Retrospectivos , Glándulas Sebáceas/metabolismo , Sebo/metabolismo , Piel/anatomía & histología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA