RESUMEN
IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.
Asunto(s)
Glioma/metabolismo , Ácido Glutámico/biosíntesis , Transaminasas/fisiología , Línea Celular Tumoral , Glioma/fisiopatología , Ácido Glutámico/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Mutación , Oxidación-Reducción/efectos de los fármacos , Proteínas Gestacionales/genética , Proteínas Gestacionales/fisiología , Transaminasas/antagonistas & inhibidores , Transaminasas/genéticaRESUMEN
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARNRESUMEN
The identification of heterozygous mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) in subsets of cancers, including secondary glioblastoma, acute myeloid leukemia, intrahepatic cholangiocarcinoma, and chondrosarcomas, led to intense discovery efforts to delineate the mutations' involvement in carcinogenesis and to develop therapeutics, which we review here. The three IDH isoforms (nicotinamide adenine dinucleotide phosphate-dependent IDH1 and IDH2, and nicotinamide adenine dinucleotide-dependent IDH3) contribute to regulating the circuitry of central metabolism. Several biochemical and genetic observations led to the discovery of the neomorphic production of the oncometabolite (R)-2-hydroxyglutarate (2-HG) by mutant IDH1 and IDH2 (mIDH). Heterozygous mutation of IDH1/2 and accumulation of 2-HG cause profound metabolic and epigenetic dysregulation, including inhibition of normal cellular differentiation, leading to disease. Crystallographic structural studies during the development of compounds targeting mIDH demonstrated common allosteric inhibition by distinct chemotypes. Ongoing clinical trials in patients with mIDH advanced hematologic malignancies have demonstrated compelling clinical proof-of-concept, validating the biology and drug discovery approach.
Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Acetamidas/síntesis química , Acetamidas/uso terapéutico , Antineoplásicos/síntesis química , Bencenoacetamidas/síntesis química , Bencenoacetamidas/uso terapéutico , Bencimidazoles/síntesis química , Bencimidazoles/uso terapéutico , Biomarcadores de Tumor/análisis , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Expresión Génica , Glutaratos/análisis , Humanos , Imidazoles/síntesis química , Imidazoles/uso terapéutico , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Modelos Moleculares , Mutación , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Investigación Biomédica TraslacionalRESUMEN
R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Antineoplásicos/farmacología , Glutaratos/farmacología , Glucólisis/genética , Lactato Deshidrogenasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosfofructoquinasa-1 Tipo C/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Células K562 , Lactato Deshidrogenasas/antagonistas & inhibidores , Lactato Deshidrogenasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa/efectos de los fármacos , Fosfofructoquinasa-1 Tipo C/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo C/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.
Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , Glutaratos/metabolismo , Histonas/metabolismo , Mitosis , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Lisina , Ratones , Nucleosomas/genética , Células RAW 264.7 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de TiempoRESUMEN
The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genéticaRESUMEN
l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.
Asunto(s)
Oxidorreductasas de Alcohol , Encefalopatías Metabólicas Innatas , Drosophila melanogaster , Modelos Moleculares , Animales , Humanos , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Encefalopatías Metabólicas Innatas/enzimología , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/fisiopatología , Drosophila melanogaster/enzimología , Glutaratos/metabolismo , Mutación , Dominio Catalítico/genética , Especificidad por Sustrato/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Sickle cell disease (SCD) is a chronic hemolytic and systemic hypoxia condition with constant oxidative stress and significant metabolic alterations. However, little is known about the correlation between metabolic alterations and the pathophysiological symptoms. Here, we report that Nrf2, a master regulator of cellular antioxidant responses, regulates the production of the metabolite l-2-hydroxyglutarate (L2HG) to mediate epigenetic histone hypermethylation for gene expression involved in metabolic, oxidative, and ferroptotic stress responses in SCD. Mechanistically, Nrf2 was found to regulate the expression of L2HG dehydrogenase (L2hgdh) to mediate L2HG production under hypoxia. Gene expression profile analysis indicated that reactive oxygen species (ROS) and ferroptosis responses were the most significantly affected signaling pathways after Nrf2 ablation in SCD. Nrf2 silencing and L2HG supplementation sensitize human sickle erythroid cells to ROS and ferroptosis stress. The absence of Nrf2 and accumulation of L2HG significantly affect histone methylation for chromatin structure modification and reduce the assembly of transcription complexes on downstream target genes to regulate ROS and ferroptosis responses. Furthermore, pharmacological activation of Nrf2 was found to have protective effects against ROS and ferroptosis stress in SCD mice. Our data suggest a novel mechanism by which Nrf2 regulates L2HG levels to mediate SCD severity through ROS and ferroptosis stress responses, suggesting that targeting Nrf2 is a viable therapeutic strategy for ameliorating SCD symptoms.
Asunto(s)
Anemia de Células Falciformes , Cromatina , Epigénesis Genética , Ferroptosis , Glutaratos , Factor 2 Relacionado con NF-E2 , Ferroptosis/genética , Glutaratos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Cromatina/metabolismo , Metilación , Oxidorreductasas de Alcohol/metabolismo , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Perfilación de la Expresión GénicaRESUMEN
Regulatory T cells (Treg cells), a distinct subset of CD4+ T cells, are necessary for the maintenance of immune self-tolerance and homeostasis1,2. Recent studies have demonstrated that Treg cells exhibit a unique metabolic profile, characterized by an increase in mitochondrial metabolism relative to other CD4+ effector subsets3,4. Furthermore, the Treg cell lineage-defining transcription factor, Foxp3, has been shown to promote respiration5,6; however, it remains unknown whether the mitochondrial respiratory chain is required for the T cell-suppression capacity, stability and survival of Treg cells. Here we report that Treg cell-specific ablation of mitochondrial respiratory chain complex III in mice results in the development of fatal inflammatory disease early in life, without affecting Treg cell number. Mice that lack mitochondrial complex III specifically in Treg cells displayed a loss of T cell-suppression capacity without altering Treg cell proliferation and survival. Treg cells deficient in complex III showed decreased expression of genes associated with Treg function, whereas Foxp3 expression remained stable. Loss of complex III in Treg cells increased DNA methylation as well as the metabolites 2-hydroxyglutarate (2-HG) and succinate that inhibit the ten-eleven translocation (TET) family of DNA demethylases7. Thus, Treg cells require mitochondrial complex III to maintain immune regulatory gene expression and suppressive function.
Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Desmetilación del ADN , Metilación de ADN , Transporte de Electrón , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glutaratos/metabolismo , Inflamación/genética , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Autotolerancia/genética , Ácido Succínico/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/enzimologíaRESUMEN
Many mass spectrometry methods using various ionization sources provide bulk composition of airborne particles, but little is known about the surface species that play a major role in determining their physicochemical properties that impact air quality, climate, and health. The present work shows that the composition of surface layers of atmospherically relevant submicron organic particles can be probed without the use of an external ionization source. Solid dicarboxylic acid particles are used as models, with glutaric acid being the most efficient at generating ions. Coating with small diacids or products from α-pinene ozonolysis demonstrates that ions are ejected from the surface, providing surface molecular characterization of organic particles on the fly. This unique approach provides a path forward for elucidating the role of the surface in determining chemical and physical properties of particles, including heterogeneous reactions, particle growth, water uptake, and interactions with biological systems.
Asunto(s)
Contaminación del Aire , Atmósfera , Espectrometría de Masas , Compuestos Orgánicos , Propiedades de Superficie , Aerosoles/análisis , Contaminación del Aire/análisis , Atmósfera/química , Monoterpenos Bicíclicos/química , Clima , Exposición a Riesgos Ambientales , Glutaratos/química , Humanos , Iones/química , Espectrometría de Masas/métodos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Ozono/química , Tamaño de la Partícula , Agua/químicaRESUMEN
Human isocitrate dehydrogenase 1 (IDH1) is an enzyme that is found in humans that plays a critical role in aerobic metabolism. As a part of the citric acid cycle, IDH1 becomes responsible for catalyzing the oxidative decarboxylation of isocitrate to form α-ketoglutarate (αKG), with nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor. Strikingly, mutations of the IDH1 enzyme have been discovered in several cancers including glioblastoma multiforme (GBM), a highly aggressive form of brain cancer. It has been experimentally determined that single-residue IDH1 mutations occur at a very high frequency in GBM. Specifically, the IDH1 R132H mutation is known to produce (D)2-hydroxyglutarate (2HG), a recognized oncometabolite. Using the previously determined catalytic mechanism of IDH1, a DFT QM model was developed to study the mechanistic properties of IDH1 R132H compared to wild type enzyme. Validating these insights, biochemical in vitro assays of metabolites produced by mutant vs wild type enzymes were measured and compared. From the results discussed herein, we discuss the mechanistic impact of mutations in IDH1 on its ability to catalyze the formation of αKG and 2HG.
Asunto(s)
Isocitrato Deshidrogenasa , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/química , Humanos , Mutación , Ácidos Cetoglutáricos/metabolismo , Teoría Funcional de la Densidad , Glutaratos/metabolismo , Glutaratos/química , Catálisis , Biocatálisis , Modelos MolecularesRESUMEN
PURPOSE: To identify therapies for combined D, L-2-hydroxyglutaric aciduria (C-2HGA), a rare genetic disorder caused by recessive variants in the SLC25A1 gene. METHODS: Patients C-2HGA were identified and diagnosed by whole exome sequencing and biochemical genetic testing. Patient derived fibroblasts were then treated with phenylbutyrate and the functional effects assessed by metabolomics and RNA-sequencing. RESULTS: In this study, we demonstrated that C-2HGA patient derived fibroblasts exhibited impaired cellular bioenergetics. Moreover, Fibroblasts form one patient exhibited worsened cellular bioenergetics when supplemented with citrate. We hypothesized that treating patient cells with phenylbutyrate (PB), an FDA approved pharmaceutical drug that conjugates glutamine for renal excretion, would reduce mitochondrial 2-ketoglutarate, thereby leading to improved cellular bioenergetics. Metabolomic and RNA-seq analyses of PB-treated fibroblasts demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of PB, an increased level of phenylacetylglutamine in patient cells was consistent with the drug acting as 2-ketoglutarate sink. CONCLUSION: Our pre-clinical studies suggest that citrate supplementation has the possibility exacerbating energy metabolism in this condition. However, improvement in cellular bioenergetics suggests phenylbutyrate might have interventional utility for this rare disease.
Asunto(s)
Fibroblastos , Glutaratos , Fenilbutiratos , Humanos , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glutaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/genética , Metabolómica , Secuenciación del Exoma , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Multiómica , Proteínas Mitocondriales , Transportadores de Anión OrgánicoRESUMEN
D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression. In line with this, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, besides its expected impact on DNA demethylation, D-2-HG reprogrammed metabolism towards increased lactate production in dendritic cells and AML. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported major histocompatibility complex class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.
Asunto(s)
Células Dendríticas , Glutaratos , Antígenos de Histocompatibilidad Clase II , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Ratones , Animales , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Fenotipo , Diferenciación Celular/efectos de los fármacos , Ácido Láctico/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Isocitrato Deshidrogenasa/genéticaRESUMEN
Elevated levels of D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) in the brain are associated with various pathological conditions, potentially contributing to neurological symptoms and neurodegeneration. Previous studies on animal models have revealed their capability to interfere with several cellular processes, including mitochondrial metabolism. Both enantiomers competitively inhibit the enzymatic activity of 2-oxoglutarate-dependent dioxygenases. These enzymes also execute several signaling cascades and regulate the level of covalent modifications on nucleic acids or proteins, e.g., methylation, hydroxylation, or ubiquitination, with an effect on epigenetic regulation of gene expression, protein stability, and intracellular signaling. To investigate the potential impact of 2HG enantiomers on human neuronal cells, we utilized the SH-SY5Y human neuroblastoma cell line as a model. We employed proton nuclear magnetic resonance (1H-NMR) spectroscopy of culture media that provided high-resolution insights into the changes in the content of metabolites. Concurrently, we performed biochemical assays to complement the 1H-NMR findings and to estimate the activities of lactate and 3-hydroxybutyrate dehydrogenases. Our results reveal that both 2HG enantiomers can influence the cellular metabolism of human neuroblastoma cells on multiple levels. Specifically, both enantiomers of 2HG comparably stimulate anaerobic metabolism of glucose and inhibit the uptake of several essential amino acids from the culture media. In this respect, both 2HG enantiomers decreased the catabolism capability of cells to incorporate the leucine-derived carbon atoms into their metabolism and to generate the ketone bodies. These results provide evidence that both enantiomers of 2HG have the potential to influence the metabolic and molecular aspects of human cells. Furthermore, we may propose that increased levels of 2HG enantiomers in the brain parenchyma may alter brain metabolism features, potentially contributing to the etiology of neurological symptoms in patients.
Asunto(s)
Glutaratos , Neuroblastoma , Línea Celular Tumoral , Supervivencia Celular , Glutaratos/química , Glutaratos/metabolismo , Hidroxibutirato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estereoisomerismo , HumanosRESUMEN
In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.
Asunto(s)
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopía de Resonancia MagnéticaRESUMEN
BACKGROUND: L-2-hydroxyglutarate (L2HG) couples mitochondrial and cytoplasmic energy metabolism to support cellular redox homeostasis. Under oxygen-limiting conditions, mammalian cells generate L2HG to counteract the adverse effects of reductive stress induced by hypoxia. Very little is known, however, about whether and how L2HG provides tissue protection from redox stress during low-flow ischemia (LFI) and ischemia-reperfusion injury. We examined the cardioprotective effects of L2HG accumulation against LFI and ischemia-reperfusion injury and its underlying mechanism using genetic mouse models. METHODS AND RESULTS: L2HG accumulation was induced by homozygous (L2HGDH [L-2-hydroxyglutarate dehydrogenase]-/-) or heterozygous (L2HGDH+/-) deletion of the L2HGDH gene in mice. Hearts isolated from these mice and their wild-type littermates (L2HGDH+/+) were subjected to baseline perfusion and 90-minute LFI or 30-minute no-flow ischemia followed by 60- or 120-minute reperfusion. Using [13C]- and [31P]-NMR (nuclear magnetic resonance) spectroscopy, high-performance liquid chromatography, reverse transcription quantitative reverse transcription polymerase chain reaction, ELISA, triphenyltetrazolium staining, colorimetric/fluorometric spectroscopy, and echocardiography, we found that L2HGDH deletion induces L2HG accumulation at baseline and under stress conditions with significant functional consequences. In response to LFI or ischemia-reperfusion, L2HG accumulation shifts glucose flux from glycolysis towards the pentose phosphate pathway. These key metabolic changes were accompanied by enhanced cellular reducing potential, increased elimination of reactive oxygen species, attenuated oxidative injury and myocardial infarction, preserved cellular energy state, and improved cardiac function in both L2HGDH-/- and L2HGDH+/- hearts compared with L2HGDH+/+ hearts under ischemic stress conditions. CONCLUSION: L2HGDH deletion-induced L2HG accumulation protects against myocardial injury during LFI and ischemia-reperfusion through a metabolic shift of glucose flux from glycolysis towards the pentose phosphate pathway. L2HG offers a novel mechanism for eliminating reactive oxygen species from myocardial tissue, mitigating redox stress, reducing myocardial infarct size, and preserving high-energy phosphates and cardiac function. Targeting L2HG levels through L2HGDH activity may serve as a new therapeutic strategy for cardiovascular diseases related to oxidative injury.
Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Glucosa/farmacología , Glutaratos , Mamíferos , Ratones , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo , Oxígeno , Fosfatos/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.
Asunto(s)
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopía de Resonancia Magnética/métodos , MutaciónRESUMEN
Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.
Asunto(s)
Aminopiridinas/farmacología , Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/genética , Mutación , Multimerización de Proteína/genética , Triazinas/farmacología , Alelos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Glutamina/genética , Glutaratos/sangre , Glutaratos/metabolismo , Células HEK293 , Humanos , Isoleucina/genética , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Triazinas/química , Triazinas/uso terapéuticoRESUMEN
(R)-3-Isobutylglutarate monoamide (R-IBM) is a key intermediate in the synthesis of the analgesic drug pregabalin. Recently, the imidase BpIH derived from Burkholderia phytofirmans was identified as a promising catalyst for the industrial production of R-IBM. Notably, this catalyst has the distinct advantage of achieving a 100% theoretical yield from 3-isobutyl glutarimide (IBI). In this study, homology modeling and structure alignment techniques were used to determine the substrate binding pocket of BpIH. Semi-rational design was used to analyze the amino acid residue conservation in the binding pocket region of BpIH. Interestingly, mutations of several low-conserved amino acid located 6-9 Šfrom the substrate significantly enhanced the catalytic activity of BpIH. Among them, the triple mutant Y37FH133NS226I (YHS-I) showed approximately a fivefold increase in enzyme activity and a significantly improved catalytic efficiency (kcat/Km). Under the same reaction time and conditions, YHS-I successfully converted IBI into R-IBM with a conversion rate of 88.87%, with an enantiomeric excess (ee) of the product exceeding 99.9%. In comparison, wild-type BpIH had a conversion rate of only 38.15%. Molecular dynamics and docking results indicated that YHS-I had higher rigidity around the mutation sites. The synergistic substitutions of Y37F, H133N, and S226I altered the interaction network within the mutation site, enhancing the protein's affinity for the substrate and improving catalytic efficiency. KEY POINTS: ⢠100% theoretical yield of R-IBM by BpIH compared with 50% by resolution ⢠Semi-rational design of BpIH based on conservativity with homologous enzymes ⢠Mutant with enzyme activity of sixfold and product ee value of 99.9.
Asunto(s)
Burkholderia , Burkholderia/enzimología , Burkholderia/genética , Cinética , Sitios de Unión , Especificidad por Sustrato , Modelos Moleculares , Glutaratos/metabolismo , AmidohidrolasasRESUMEN
We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including ß-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.