Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.035
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(5): 1254-1264.e11, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29628140

RESUMEN

The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
2.
Nature ; 629(8011): 474-480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600384

RESUMEN

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Asunto(s)
Ligandos , Conformación Proteica , Receptores Opioides mu , Humanos , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Unión Proteica , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Imagen Individual de Molécula
3.
Nature ; 614(7948): 572-579, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697823

RESUMEN

The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.


Asunto(s)
Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas , Aminoácidos/metabolismo , Dominio Catalítico , Guanosina Difosfato/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Multimerización de Proteína , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal
4.
Mol Cell ; 81(2): 398-407.e4, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340489

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Treonina-ARNt Ligasa/genética , Treonina/metabolismo , Regulación de la Expresión Génica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Treonina-ARNt Ligasa/antagonistas & inhibidores , Treonina-ARNt Ligasa/metabolismo
5.
Trends Biochem Sci ; 49(3): 195-198, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195289

RESUMEN

Targeting translational factor proteins (TFPs) presents significant promise for the development of innovative antitubercular drugs. Previous insights from antibiotic binding mechanisms and recently solved 3D crystal structures of Mycobacterium tuberculosis (Mtb) elongation factor thermo unstable-GDP (EF-Tu-GDP), elongation factor thermo stable-EF-Tu (EF-Ts-EF-Tu), and elongation factor G-GDP (EF-G-GDP) have opened up new avenues for the design and development of potent antituberculosis (anti-TB) therapies.


Asunto(s)
Antituberculosos , Factor Tu de Elongación Peptídica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Proteínas/metabolismo
6.
Nature ; 609(7928): 793-800, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944563

RESUMEN

The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.


Asunto(s)
Caperuzas de ARN , ARN Viral , SARS-CoV-2 , Proteínas Virales , Antivirales , COVID-19/virología , Dominio Catalítico , Guanosina Difosfato/metabolismo , Humanos , Metiltransferasas/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Dominios Proteicos , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Tratamiento Farmacológico de COVID-19
7.
Mol Cell ; 80(1): 29-42.e10, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857952

RESUMEN

(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.


Asunto(s)
Aminoácidos/biosíntesis , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Nucleótidos/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Retroalimentación Fisiológica , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Purinas/biosíntesis , Pirimidinas/biosíntesis
8.
Mol Cell ; 80(1): 59-71.e4, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818430

RESUMEN

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The ß1-adrenergic receptor (ß1-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by ß1-ARs, leading to increased heart rate and contractility. Here, we use cryo-electron microscopy and functional studies to investigate the molecular mechanism by which ß1-AR activates Gs. We find that the tilting of α5-helix breaks a hydrogen bond between the sidechain of His373 in the C-terminal α5-helix and the backbone carbonyl of Arg38 in the N-terminal αN-helix of Gαs. Together with the disruption of another interacting network involving Gln59 in the α1-helix, Ala352 in the ß6-α5 loop, and Thr355 in the α5-helix, these conformational changes might lead to the deformation of the GDP-binding pocket. Our data provide molecular insights into the activation of G-proteins by G-protein-coupled receptors.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Isoproterenol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Animales , Sitios de Unión , Bovinos , Línea Celular , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
9.
Cell ; 149(7): 1488-99, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726436

RESUMEN

Tubulins are essential for the reproduction of many eukaryotic viruses, but historically, bacteriophage were assumed not to require a cytoskeleton. Here, we identify a tubulin-like protein, PhuZ, from bacteriophage 201φ2-1 and show that it forms filaments in vivo and in vitro. The PhuZ structure has a conserved tubulin fold, with an unusual, extended C terminus that we demonstrate to be critical for polymerization in vitro and in vivo. Longitudinal packing in the crystal lattice mimics packing observed by EM of in-vitro-formed filaments, indicating how interactions between the C terminus and the following monomer drive polymerization. PhuZ forms a filamentous array that is required for positioning phage DNA within the bacterial cell. Correct positioning to the cell center and optimal phage reproduction only occur when the PhuZ filament is dynamic. Thus, we show that PhuZ assembles a spindle-like array that functions analogously to the microtubule-based spindles of eukaryotes.


Asunto(s)
Bacteriófagos/fisiología , Pseudomonas/virología , Tubulina (Proteína)/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Citoesqueleto/metabolismo , ADN Viral/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pseudomonas/citología , Alineación de Secuencia , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Proteínas Virales/química , Proteínas Virales/genética
10.
Proc Natl Acad Sci U S A ; 121(36): e2311711121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39196624

RESUMEN

Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.


Asunto(s)
Guanosina Difosfato , Guanosina Difosfato/metabolismo , Humanos , Simulación de Dinámica Molecular , Transferencia Resonante de Energía de Fluorescencia , Dominios Proteicos , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Unión Proteica , Péptidos Cíclicos , Depsipéptidos
11.
Proc Natl Acad Sci U S A ; 121(39): e2413100121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292747

RESUMEN

The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core ß-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Guanosina Difosfato , Guanosina Trifosfato , Guanosina Difosfato/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Guanosina Trifosfato/metabolismo , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Modelos Moleculares
12.
Proc Natl Acad Sci U S A ; 121(34): e2405986121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145928

RESUMEN

RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.


Asunto(s)
Membrana Celular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Lipoilación , Proteínas ras/metabolismo , Proteínas ras/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
13.
Annu Rev Biochem ; 80: 943-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675921

RESUMEN

GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,ß topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.


Asunto(s)
Secuencias de Aminoácidos , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al GTP/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
14.
Nature ; 584(7822): 640-645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32612237

RESUMEN

Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA that is delivered by the elongation factor EF-Tu1. To understand the molecular mechanism of this proofreading step it is necessary to visualize GTP-catalysed elongation, which has remained a challenge2-4. Here we use time-resolved cryogenic electron microscopy to reveal 33 ribosomal states after the delivery of aminoacyl-tRNA by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding centre dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis enables the GTPase domain of EF-Tu to extend away, releasing EF-Tu from tRNA. The 30S subunit then locks cognate tRNA in the decoding centre and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase centre. By contrast, the decoding centre fails to lock near-cognate tRNA, enabling the dissociation of near-cognate tRNA both during initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between ribosomes in initial selection states5,6 and in proofreading states, which together govern the efficient rejection of incorrect tRNA.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Escherichia coli , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Ribosomas/química , Rotación
15.
Genes Dev ; 32(17-18): 1226-1241, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108131

RESUMEN

GTP-binding protein 1 (GTPBP1) and GTPBP2 comprise a divergent group of translational GTPases with obscure functions, which are most closely related to eEF1A, eRF3, and Hbs1. Although recent reports implicated GTPBPs in mRNA surveillance and ribosome-associated quality control, how they perform these functions remains unknown. Here, we demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aminoacyl-transfer RNA (aa-tRNA) to the ribosomal A site in a GTP-dependent manner. It also stimulates exosomal degradation of mRNAs in elongation complexes. The kinetics of GTPBP1-mediated elongation argues against its functioning in elongation per se but supports involvement in mRNA surveillance. Thus, GTP hydrolysis by GTPBP1 is not followed by rapid peptide bond formation, suggesting that after hydrolysis, GTPBP1 retains aa-tRNA, delaying its accommodation in the A site. In physiological settings, this would cause ribosome stalling, enabling GTPBP1 to elicit quality control programs; e.g., by recruiting the exosome. GTPBP1 can also deliver deacylated tRNA to the A site, indicating that it might function via interaction with deacylated tRNA, which accumulates during stresses. Although GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, suggesting that its function might also involve interaction with aa-tRNA, GTPBP2 lacked elongation activity and did not stimulate exosomal degradation, indicating that GTPBP1 and GTPBP2 have different functions.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Extensión de la Cadena Peptídica de Translación , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo
16.
J Biol Chem ; 300(9): 107663, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128725

RESUMEN

Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and the GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surrounding the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.


Asunto(s)
Proteínas Bacterianas , Vibrio cholerae , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/química , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Hierro/metabolismo , Hierro/química , Nucleótidos/metabolismo , Especificidad por Sustrato
17.
J Biol Chem ; 300(6): 107336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718863

RESUMEN

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Escherichia coli , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Dominios Proteicos , Multimerización de Proteína , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , División Celular
18.
Biophys J ; 123(8): 979-991, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38459695

RESUMEN

COG0523 proteins, also known as nucleotide-dependent metallochaperones, are a poorly understood class of small P-loop G3E GTPases. Multiple family members play critical roles in bacterial pathogen survival during an infection as part of the adaptive response to host-mediated "nutritional immunity." Our understanding of the structure, dynamics, and molecular-level function of COG0523 proteins, apart from the eukaryotic homolog, Zng1, remains in its infancy. Here, we use X-ray absorption spectroscopy to establish that Acinetobacter baumannii (Ab) ZigA coordinates ZnII using all three cysteines derived from the invariant CXCC motif to form an S3(N/O) coordination complex, a feature inconsistent with the ZnII-bound crystal structure of a distantly related COG0523 protein of unknown function from Escherichia coli, EcYjiA. The binding of ZnII and guanine nucleotides is thermodynamically linked in AbZigA, and this linkage is more favorable for the substrate GTP relative to the product GDP. Part of this coupling originates with nucleotide-induced stabilization of the G-domain tertiary structure as revealed by global thermodynamics measurements and hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS also reveals that the HDX behavior of the G2 (switch 1) loop is highly sensitive to nucleotide status and becomes more exchange labile in the GDP (product)-bound state. Significant long-range perturbation of local stability in both the G-domain and the C-terminal domain define a candidate binding pocket for a client protein that appears sensitive to nucleotide status (GDP versus GTP). We place these new insights into the structure, dynamics, and energetics of intermolecular metal transfer into the context of a model for AbZigA metallochaperone function.


Asunto(s)
Acinetobacter baumannii , Zinc , Humanos , Zinc/metabolismo , Acinetobacter baumannii/metabolismo , Nucleótidos/metabolismo , Bacterias/metabolismo , Guanosina Trifosfato/metabolismo , Unión Proteica , Guanosina Difosfato/metabolismo
19.
Biochemistry ; 63(21): 2759-2767, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39441981

RESUMEN

Drosophila Pins (and its mammalian homologue LGN) play a crucial role in the process of asymmetric cell division (ACD). Extensive research has established that Pins/LGN functions as a conformational switch primarily through intramolecular interactions involving the N-terminal TPR repeats and the C-terminal GoLoco (GL) motifs. The GL motifs served as binding sites for the α subunit of the trimeric G protein (Gα), which facilitates the release of the autoinhibited conformation of Pins/LGN. While LGN has been observed to specifically bind to Gαi·GDP, Pins has been found to associate with both Drosophila Gαi (dGαi) and Gαo (dGαo) isoforms. Moreover, dGαo was reported to be able to bind Pins in both the GDP- and GTP-bound forms. However, the precise mechanism underlying the influence of dGαo on the conformational states of Pins remains unclear, despite extensive investigations into the Gαi·GDP-mediated regulatory conformational changes in LGN/Pins. In this study, we conducted a comprehensive characterization of the interactions between Pins-GL motifs and dGαo in both GDP- and GTP-loaded forms. Our findings reveal that Pins-GL specifically binds to GDP-loaded dGαo. Through biochemical characterization, we determined that the intramolecular interactions of Pins primarily involve the entire TPR domain and the GL23 motifs. Additionally, we observed that Pins can simultaneously bind three molecules of dGαo·GDP, leading to a partial opening of the autoinhibited conformation. Furthermore, our study presents evidence contrasting with previous observations indicating the absence of binding between dGαi and Pins-GLs, thus implying the pivotal role of dGαo as the principal participant in the ACD pathway associated with Pins.


Asunto(s)
Proteínas de Drosophila , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Conformación Proteica , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Drosophila melanogaster/metabolismo , Unión Proteica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Sitios de Unión
20.
Biochem Biophys Res Commun ; 725: 150232, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897042

RESUMEN

Molecular processes are orchestrated by various proteins that promote early endosomes to become late endosomes and eventually fuse with lysosomes, guaranteeing the degradation of the content. Rab7, which is localized to late endosomes, is one of the most well-known GTPases. ORP1L is recruited by Rab7 to facilitate the fusion of late endosomes and lysosomes. Here, we present the structure of GDP-bound Rab7 Q67L with ORP1L. Structural analysis, supported by biochemical and ITC binding experiments, not only provides structural insight into the interactions between the ORP1L ANK domain and Rab7 but also suggests that the GTPase activity of Rab7 does not interfere with its ORP1L-binding capacity.


Asunto(s)
Guanosina Difosfato , Unión Proteica , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Humanos , Modelos Moleculares , Receptores de Esteroides/metabolismo , Receptores de Esteroides/química , Conformación Proteica , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA