Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.106
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098344

RESUMEN

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Asunto(s)
Citocinas , Heridas y Lesiones , Animales , Ratones , Inmunidad Adaptativa , Quimiocinas , Epidermis , Inmunidad Innata , Heridas y Lesiones/inmunología
2.
Nat Immunol ; 19(4): 327-341, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507356

RESUMEN

Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.


Asunto(s)
Inmunidad Innata/inmunología , Heridas y Lesiones/inmunología , Animales , Humanos
3.
Nature ; 629(8010): 174-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693412

RESUMEN

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Asunto(s)
Entrenamiento Aeróbico , Multiómica , Condicionamiento Físico Animal , Resistencia Física , Animales , Femenino , Humanos , Masculino , Ratas , Acetilación , Sangre/inmunología , Sangre/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Bases de Datos Factuales , Epigenoma , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Internet , Lipidómica , Metaboloma , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Especificidad de Órganos/fisiología , Fosforilación , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Proteoma/metabolismo , Proteómica , Factores de Tiempo , Transcriptoma/genética , Ubiquitinación , Heridas y Lesiones/genética , Heridas y Lesiones/inmunología , Heridas y Lesiones/metabolismo
4.
Immunity ; 50(4): 892-906, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995505

RESUMEN

The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.


Asunto(s)
Citocinas/inmunología , Interleucina-17/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Encéfalo/inmunología , Regulación de la Expresión Génica , Humanos , Infecciones/inmunología , Inflamación/inmunología , Interleucina-17/antagonistas & inhibidores , Ratones , Terapia Molecular Dirigida , Neoplasias/inmunología , Proteínas de Unión al ARN/inmunología , Receptores de Interleucina-17/antagonistas & inhibidores , Receptores de Interleucina-17/inmunología , Transducción de Señal , Estrés Fisiológico/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Heridas y Lesiones/inmunología
5.
Annu Rev Cell Dev Biol ; 30: 141-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150013

RESUMEN

Secondary lymphoid tissues are the sites of both innate and adaptive host defense. Aside from the relatively static nonhematopoietic stromal elements and some macrophages and dendritic cells, most of the cells in these tissues are in constant movement, but the organs maintain a defined microanatomy with preferred locations for the bulk of T cells, B cells, and other lymphocytes and subsets of myeloid cells. Here we describe both the cell dynamics and spatial organization of lymph nodes and review how both physical features and molecular cues guide cell movement to optimize host defense. We emphasize the role of locality in improving the efficiency of a system requiring rare cells to find each other and interact productively through membrane-bound or short-range secreted mediators and highlight how changes in steady-state cell positioning during an infectious challenge contribute to rapid generation of productive responses.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Tejido Linfoide/inmunología , Animales , Comunicación Celular , Quimiocinas/fisiología , Quimiotaxis de Leucocito/fisiología , Células Dendríticas/inmunología , Centro Germinal/inmunología , Centro Germinal/ultraestructura , Humanos , Infecciones/inmunología , Inflamación/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/ultraestructura , Activación de Linfocitos , Subgrupos Linfocitarios/inmunología , Tejido Linfoide/ultraestructura , Macrófagos/inmunología , Neutrófilos/inmunología , Especificidad de Órganos , Células del Estroma/inmunología , Factores de Tiempo , Vertebrados/anatomía & histología , Vertebrados/inmunología , Heridas y Lesiones/inmunología
6.
Nat Immunol ; 15(9): 833-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086774

RESUMEN

Immune defenses are triggered by microbe-associated molecular patterns or as a result of damage to host cells. The elicitors of immune responses in the nematode Caenorhabditis elegans are unclear. Using a genome-wide RNA-mediated interference (RNAi) screen, we identified the G protein-coupled receptor (GPCR) DCAR-1 as being required for the response to fungal infection and wounding. DCAR-1 acted in the epidermis to regulate the expression of antimicrobial peptides via a conserved p38 mitogen-activated protein kinase pathway. Through targeted metabolomics analysis we identified the tyrosine derivative 4-hydroxyphenyllactic acid (HPLA) as an endogenous ligand. Our findings reveal DCAR-1 and its cognate ligand HPLA to be triggers of the epidermal innate immune response in C. elegans and highlight the ancient role of GPCRs in host defense.


Asunto(s)
Proteínas de Caenorhabditis elegans/inmunología , Caenorhabditis elegans/inmunología , Epidermis/inmunología , Inmunidad Innata/inmunología , Micosis/inmunología , Fenilpropionatos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Heridas y Lesiones/inmunología , Animales , Ligandos , Sistema de Señalización de MAP Quinasas/inmunología , Interferencia de ARN
7.
Immunity ; 46(6): 943-956, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636961

RESUMEN

The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Plexo Coroideo/inmunología , Infecciones/inmunología , Células Mieloides/fisiología , Enfermedades Neurodegenerativas/inmunología , Neuroinmunomodulación , Heridas y Lesiones/inmunología , Animales , Sistema Nervioso Central , Humanos , Meninges/inmunología , Neuroprotección
8.
Immunity ; 45(1): 119-30, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438769

RESUMEN

Type 1 interferons (IFNs) promote inflammation in the skin but the mechanisms responsible for inducing these cytokines are not well understood. We found that IFN-ß was abundantly produced by epidermal keratinocytes (KCs) in psoriasis and during wound repair. KC IFN-ß production depended on stimulation of mitochondrial antiviral-signaling protein (MAVS) by the antimicrobial peptide LL37 and double stranded-RNA released from necrotic cells. MAVS activated downstream TBK1 (TANK-Binding Kinase 1)-AKT (AKT serine/threonine kinase 1)-IRF3 (interferon regulatory factor 3) signaling cascade leading to IFN-ß production and then promoted maturation of dendritic cells. In mice, the production of epidermal IFN-ß by LL37 required MAVS, and human wounded and/or psoriatic skin showed activation of MAVS-associated IRF3 and induction of MAVS and IFN-ß gene signatures. These findings show that KCs are an important source of IFN-ß and MAVS is critical to this function, and demonstrates how the epidermis triggers unwanted skin inflammation under disease conditions.


Asunto(s)
Catelicidinas/metabolismo , Células Dendríticas/fisiología , Epidermis/patología , Queratinocitos/inmunología , Mitocondrias/metabolismo , Psoriasis/inmunología , Heridas y Lesiones/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos , Catelicidinas/genética , Diferenciación Celular , Células Cultivadas , Humanos , Interferón beta/metabolismo , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , Transducción de Señal , Cicatrización de Heridas
9.
Cytotherapy ; 26(7): 714-718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506768

RESUMEN

BACKGROUND AIMS: In this paper, we present a review of several selected talks presented at the CTTACC conference (Cellular Therapies in Trauma and Critical Care) held in Scottsdale, AZ in May 2023. This conference review highlights the potential for cellular therapies to "reset" the dysregulated immune response and restore physiologic functions to normal. Improvements in medical care systems and technology have increasingly saved lives after major traumatic events. However, many of these patients have complicated post-traumatic sequelae, ranging from short-term multi-organ failure to chronic critical illness. METHODS/RESULTS: Patients with chronic critical illness have been found to have dysregulated immune responses. These abnormal and harmful immune responses persist for years after the initial insult and can potentially be mitigated by treatment with cellular therapies. CONCLUSIONS: The sessions emphasized the need for more research and clinical trials with cellular therapies for the treatment of a multitude of chronic illnesses: post-trauma, radiation injury, COVID-19, burns, traumatic brain injury (TBI) and other chronic infections.


Asunto(s)
Quemaduras , COVID-19 , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/complicaciones , Quemaduras/terapia , Quemaduras/inmunología , Quemaduras/complicaciones , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedad Crónica , COVID-19/inmunología , COVID-19/terapia , Enfermedad Crítica , Sistema Inmunológico , Infecciones/terapia , Infecciones/inmunología , Infecciones/etiología , SARS-CoV-2 , Heridas y Lesiones/terapia , Heridas y Lesiones/inmunología , Heridas y Lesiones/complicaciones , Congresos como Asunto
10.
Immunity ; 42(6): 1005-19, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26084021

RESUMEN

Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Interleucinas/metabolismo , Receptores de Superficie Celular/metabolismo , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Heridas y Lesiones/inmunología , Animales , Citotoxicidad Inmunológica , Humanos , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/inmunología , Transducción de Señal
11.
Immunity ; 42(6): 1075-86, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26047922

RESUMEN

Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoglobulinas/metabolismo , Elastasa de Leucocito/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/inmunología , Migración Transendotelial y Transepitelial/inmunología , Animales , Benzoatos/administración & dosificación , Moléculas de Adhesión Celular/genética , Células Cultivadas , Células Endoteliales/fisiología , Humanos , Inmunoglobulinas/genética , Uniones Intercelulares/efectos de los fármacos , Elastasa de Leucocito/genética , Leucotrieno B4/administración & dosificación , Antígeno de Macrófago-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/inmunología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Vénulas/fisiología , Heridas y Lesiones/inmunología
12.
Immunology ; 162(4): 377-388, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32986856

RESUMEN

Traumatic injury initiates a large and complex immune response in the minutes after the initial insult, comprising of simultaneous pro- and anti-inflammatory responses. In patients that survive the initial injury, these immune responses are believed to contribute towards complications such as the development of sepsis and multiple organ dysfunction syndrome. These post-traumatic complications affect a significant proportion of patients and are a major contributing factor for poor outcomes and an increased burden on healthcare systems. Therefore, understanding the immune responses to trauma is crucial for improving patient outcomes through the development of novel therapeutics and refining resuscitation strategies. In order to do this, preclinical animal models must mimic human immune responses as much as possible, and as such, we need to understand the constraints of each species in the context of trauma. A number of species have been used in this field; however, these models are limited by their genetic background and their capacity for recapitulating human immune function. This review provides a brief overview of the immune response in critically injured human patients and discusses the most commonly used species for modelling trauma, focusing on how their immune response to serious injury and haemorrhage compares to that of humans.


Asunto(s)
Modelos Animales de Enfermedad , Hemorragia/inmunología , Insuficiencia Multiorgánica/inmunología , Sepsis/inmunología , Heridas y Lesiones/inmunología , Animales , Humanos , Inmunidad , Insuficiencia Multiorgánica/etiología , Sepsis/etiología , Heridas y Lesiones/complicaciones
13.
Immunology ; 163(1): 105-111, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33502012

RESUMEN

Whether resident and recruited myeloid cells may impair or aid healing of acute skin wounds remains a debated question. To begin to address this, we examined the importance of CD11c+ myeloid cells in the early activation of skin wound repair. We find that an absence of CD11c+ cells delays wound closure and epidermal proliferation, likely due to defects in the activation of the IL-23-IL-22 axis that is required for wound healing.


Asunto(s)
Antígenos CD11/deficiencia , Células Dendríticas/inmunología , Piel/inmunología , Cicatrización de Heridas , Heridas y Lesiones/inmunología , Animales , Antígenos CD11/genética , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Cinética , Células de Langerhans/inmunología , Células de Langerhans/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/metabolismo , Piel/patología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología
14.
Mol Med ; 27(1): 35, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832430

RESUMEN

BACKGROUND: Complement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome. METHODS: In a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3-6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients' admission TCC, TCC-AUC3-6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures. RESULTS: TCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3-6 correlated positively with New Injury Severity Score (Spearman's rho, p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (- 0.21, 0.02 and - 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3-6 were negatively associated with ventilator-free days. TCC-AUC3-6 outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4. CONCLUSIONS: Complement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors.


Asunto(s)
Activación de Complemento , Traumatismos Craneocerebrales/inmunología , Insuficiencia Multiorgánica/inmunología , Respiración Artificial , Heridas y Lesiones/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Traumatismos Craneocerebrales/mortalidad , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Síndrome , Factores de Tiempo , Heridas y Lesiones/mortalidad , Adulto Joven
16.
Cytokine ; 141: 155457, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581471

RESUMEN

INTRODUCTION: Traumatic injury with hemorrhage (TH) induces an inflammatory response in the lung resulting in lung injury involving activation of immune cells including myeloid cells (i.e., monocytes, granulocytes and macrophages), in part through TLRs. TLRs, via the recognition of damage associated molecular patterns (DAMPs), are a key link between tissue injury and inflammation. Nonetheless, the role of TLRs in myeloid cell activation and TH-induced lung injury remains ill defined. METHODS: C57BL/6 male mice were subjected to TH or sham treatment (n = 4-6 /group). Lung tissues were collected two hrs. after injury. Single cells were isolated from the lungs by enzymatic digestion and myeloid cell TLR expression and activation (i.e., cytokine production) were assessed using flow cytometry techniques. RESULTS: The injury was associated with a profound change in the lung myeloid cell population. TH markedly increased lung CD11b+ monocyte numbers and Gr1+ granulocyte numbers as compared to sham mice. The number of cells expressing TLR2, TLR4, and TLR9 were increased 4-7 fold in the TH mice. Activation for elevated cytokine (TNFα, IL-10) production was observed in the lung monocyte population of the TH mice. CONCLUSIONS: Trauma-induced lung injury is associated with infiltration of the lungs with TLR expressing myeloid cells that are activated for elevated cytokine responses. This elevation in TLR expression may contribute to DAMP-mediated pulmonary complications of an inflammatory nature and warrants further investigation.


Asunto(s)
Hemorragia/inmunología , Lesión Pulmonar/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Receptores Toll-Like/inmunología , Heridas y Lesiones/inmunología , Animales , Hemorragia/complicaciones , Interleucina-10/inmunología , Lesión Pulmonar/etiología , Masculino , Ratones , Factor de Necrosis Tumoral alfa/inmunología , Heridas y Lesiones/complicaciones
17.
Transfusion ; 61 Suppl 1: S144-S149, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34269429

RESUMEN

INTRODUCTION: Widely varying rates of alloimmunization associated with transfusing uncrossmatched RBC products to trauma patients as part of hemostatic resuscitation have been reported. We characterized the rates of RBC alloimmunization in our severely injured Rh(D) negative trauma population who received uncrossmatched Rh(D) positive RBC products. METHODS: In a 10-year retrospective analysis to assess Rh(D) alloimmunization risks, Rh(D) negative adult trauma patients initially requiring uncrossmatched group O Rh(D) positive RBC products with either RBC units or low titer group O whole blood as part of massive transfusion protocol (MTP) activation were identified. Only those Rh(D) negative patients whose initial antibody screenings were negative were included. Duration of serologic follow-up from date of MTP activation to either date of anti-D detection or most recent negative antibody screening was calculated. RESULTS: There were 129 eligible Rh(D) negative trauma patients identified. Median injury severity score was 25. Anti-D was detected in 10 (7.8%) patients after a median of 161.5 days; the median duration of serologic follow-up in those who did not have anti-D detected was 220 days. Patients who had anti-D detected were less severely injured and received fewer Rh(D) positive RBC products versus those who did not. DISCUSSION: In our severely injured adult trauma patients with MTP activation requiring uncrossmatched group O Rh(D) positive RBC products, the rate of anti-D detection was low. Additional studies are necessary to determine generalizability of these findings and fully characterize alloimmunization risks in trauma patients with varying extents of injury.


Asunto(s)
Transfusión de Eritrocitos/efectos adversos , Isoanticuerpos/inmunología , Sistema del Grupo Sanguíneo Rh-Hr/inmunología , Globulina Inmune rho(D)/inmunología , Heridas y Lesiones/inmunología , Adulto , Tipificación y Pruebas Cruzadas Sanguíneas , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Isoanticuerpos/sangre , Masculino , Estudios Retrospectivos , Sistema del Grupo Sanguíneo Rh-Hr/sangre , Globulina Inmune rho(D)/sangre , Heridas y Lesiones/sangre , Heridas y Lesiones/terapia
18.
J Immunol ; 202(10): 3020-3032, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988118

RESUMEN

The inflammatory response to infection or injury dramatically increases the hematopoietic demand on the bone marrow to replace effector leukocytes consumed in the inflammatory response. In the setting of infection, pathogen-associated molecular patterns induce emergency hematopoiesis, activating hematopoietic stem and progenitor cells to proliferate and produce progeny for accelerated myelopoiesis. Sterile tissue injury due to trauma also increases leukocyte demand; however, the effect of sterile tissue injury on hematopoiesis is not well described. We find that tissue injury alone induces emergency hematopoiesis in mice subjected to polytrauma. This process is driven by IL-1/MyD88-dependent production of G-CSF. G-CSF induces the expansion of hematopoietic progenitors, including hematopoietic stem cells and multipotent progenitors, and increases the frequency of myeloid-skewed progenitors. To our knowledge, these data provide the first comprehensive description of injury-induced emergency hematopoiesis and identify an IL-1/MyD88/G-CSF-dependent pathway as the key regulator of emergency hematopoiesis after injury.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/inmunología , Hematopoyesis/inmunología , Interleucina-1/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Heridas y Lesiones/inmunología , Animales , Factor Estimulante de Colonias de Granulocitos/genética , Hematopoyesis/genética , Interleucina-1/genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Heridas y Lesiones/genética , Heridas y Lesiones/patología
19.
J Immunol ; 202(9): 2720-2727, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30910860

RESUMEN

The aim of this study was to determine whether skin wounding induces monocyte (Mo) expansion in bone marrow and whether IL-1R1 signaling regulates this process. Our data show that skin wounding increases myeloid lineage-committed multipotent progenitors (MPP3 subset) and Mo in bone marrow, but this expansion is not impaired in Il1r1-/- mice. We also demonstrate that M-CSF-induced differentiation of myeloid progenitors into Mo is not impaired by the loss of IL-1R1 ex vivo, indicating that IL-R1 deficiency does not abrogate myeloid progenitor differentiation potential. In addition, we observed modestly delayed wound closure in Il1r1-/- mice associated with higher frequency of Ly6Clo Mo in the circulation at baseline and in wounds early after injury. Thus, in contrast to other models of inflammation that involve IL-1R1-dependent monopoiesis, our results demonstrate that skin wounding induces Mo progenitor and Mo expansion independently of IL-1R1 signaling.


Asunto(s)
Médula Ósea/inmunología , Monocitos/inmunología , Receptores Tipo I de Interleucina-1/deficiencia , Piel/inmunología , Cicatrización de Heridas/inmunología , Heridas y Lesiones/inmunología , Animales , Médula Ósea/patología , Ratones , Ratones Noqueados , Monocitos/patología , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Piel/patología , Cicatrización de Heridas/genética , Heridas y Lesiones/genética , Heridas y Lesiones/patología
20.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800867

RESUMEN

During tissue injury events, the innate immune system responds immediately to alarms sent from the injured cells, and the adaptive immune system subsequently joins in the inflammatory reaction. The control mechanism of each immune reaction relies on the orchestration of different types of T cells and the activators, antigen-presenting cells, co-stimulatory molecules, and cytokines. Mitochondria are an intracellular signaling organelle and energy plant, which supply the energy requirement of the immune system and maintain the system activation with the production of reactive oxygen species (ROS). Extracellular mitochondria can elicit regenerative effects or serve as an activator of the immune cells to eliminate the damaged cells. Recent clarification of the cytosolic escape of mitochondrial DNA triggering innate immunity underscores the pivotal role of mitochondria in inflammation-related diseases. Human mesenchymal stem cells could transfer mitochondria through nanotubular structures to defective mitochondrial DNA cells. In recent years, mitochondrial therapy has shown promise in treating heart ischemic events, Parkinson's disease, and fulminating hepatitis. Taken together, these results emphasize the emerging role of mitochondria in immune-cell-mediated tissue regeneration and ageing.


Asunto(s)
Envejecimiento/inmunología , Células Presentadoras de Antígenos/inmunología , Subgrupos de Linfocitos B/inmunología , Mitocondrias/fisiología , Regeneración/inmunología , Subgrupos de Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Citocinas/fisiología , ADN/metabolismo , ADN Mitocondrial/metabolismo , Reposicionamiento de Medicamentos , Péptido 1 Similar al Glucagón/agonistas , Homeostasis , Humanos , Inmunidad Innata , Inflamación , Péptidos y Proteínas de Señalización Intercelular/fisiología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Inmunología del Trasplante , Heridas y Lesiones/inmunología , Heridas y Lesiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA