Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(2): 360-371.e13, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290142

RESUMEN

Neanderthals and modern humans interbred at least twice in the past 100,000 years. While there is evidence that most introgressed DNA segments from Neanderthals to modern humans were removed by purifying selection, less is known about the adaptive nature of introgressed sequences that were retained. We hypothesized that interbreeding between Neanderthals and modern humans led to (1) the exposure of each species to novel viruses and (2) the exchange of adaptive alleles that provided resistance against these viruses. Here, we find that long, frequent-and more likely adaptive-segments of Neanderthal ancestry in modern humans are enriched for proteins that interact with viruses (VIPs). We found that VIPs that interact specifically with RNA viruses were more likely to belong to introgressed segments in modern Europeans. Our results show that retained segments of Neanderthal ancestry can be used to detect ancient epidemics.


Asunto(s)
Hibridación Genética/genética , Hombre de Neandertal/genética , Virus ARN/genética , Alelos , Animales , Evolución Biológica , Genoma Humano/genética , Haplotipos , Hominidae/genética , Humanos , Filogenia , Virus ARN/patogenicidad , Selección Genética/genética
2.
Nature ; 628(8009): 804-810, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538783

RESUMEN

Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.


Asunto(s)
Genoma de Planta , Poliploidía , Saccharum , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Haplotipos/genética , Hibridación Genética/genética , Fitomejoramiento , Saccharum/clasificación , Saccharum/genética , Biotecnología , Estándares de Referencia , ADN de Plantas/genética
3.
Nature ; 633(8029): 380-388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112710

RESUMEN

Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.


Asunto(s)
Domesticación , Tecnología de Genética Dirigida , Interferencia de ARN , Zea mays , Introgresión Genética/genética , Genoma de Planta/genética , Hibridación Genética/genética , Polen/enzimología , Polen/genética , Zea mays/clasificación , Zea mays/genética , Lipasa/genética , Lipasa/metabolismo , Imagen Individual de Molécula
4.
PLoS Biol ; 20(1): e3001469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007278

RESUMEN

Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.


Asunto(s)
Ecosistema , Hibridación Genética/genética , Smegmamorpha/genética , Animales , Femenino , Genotipo , Heterocigoto , Masculino , Selección Genética
5.
PLoS Pathog ; 18(2): e1010300, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35139131

RESUMEN

Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.


Asunto(s)
ADN de Cinetoplasto/genética , Hibridación Genética/genética , Trypanosoma brucei brucei/genética , Trypanosoma/genética , Animales , ADN Mitocondrial/genética , ADN Protozoario/genética , Genotipo , Humanos , Tripanosomiasis Africana/genética
6.
Mol Biol Rep ; 51(1): 961, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235637

RESUMEN

The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.


Asunto(s)
Gossypium , Infertilidad Vegetal , Gossypium/genética , Gossypium/fisiología , Infertilidad Vegetal/genética , Marcadores Genéticos , Genes de Plantas/genética , Fitomejoramiento/métodos , Semillas/genética , Regulación de la Expresión Génica de las Plantas/genética , Alelos , Hibridación Genética/genética
7.
Mol Biol Rep ; 51(1): 582, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678168

RESUMEN

BACKGROUND: Hybridization associated with polyploidy studies is rare in the tropics. The genus Zygopetalum (Orchidaceae) was investigated here as a case study of Neotropical plants. In the rocky highlands of the Ibitipoca State Park (ISP), southeast Brazil, individuals with intermediate colors and forms between the species Z. maculatum and Z. triste were commonly identified. METHODS AND RESULTS: Chromosomal analysis and DNA quantity showed a uniform population. Regardless of the aspects related to the color and shape of floral structures, all individuals showed 2n = 96 chromosomes and an average of 14.05 pg of DNA. Irregularities in meiosis associated with chromosome number and C value suggest the occurrence of polyploidy. The genetic distance estimated using ISSR molecular markers revealed the existence of genetic variability not related to morphological clusters. Morphometric measurements of the flower pieces revealed that Z. maculatum shows higher variation than Z. triste although lacking a defined circumscription. CONCLUSION: The observed variation can be explained by the polyploid and phenotypic plasticity resulting from the interaction of the genotypes with the heterogeneous environments observed in this habitat.


Asunto(s)
Variación Genética , Orchidaceae , Fenotipo , Poliploidía , Orchidaceae/genética , Variación Genética/genética , Brasil , Cromosomas de las Plantas/genética , Genotipo , Flores/genética , Flores/anatomía & histología , Repeticiones de Microsatélite/genética , Hibridación Genética/genética
8.
Mol Biol Rep ; 51(1): 738, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874633

RESUMEN

BACKGROUND: Interspecific hybrids of rohu (Labeo rohita) and catla (Labeo catla) are common, especially in India due to constrained breeding. These hybrids must segregate from their wild parents as part of conservational strategies. This study intended to screen the hybrids from wild rohu and catla parents using both morphometric and molecular approaches. METHODS & RESULTS: The carp samples were collected from Jharkhand and West Bengal, India. The correlation and regression analysis of morphometric features are considered superficial but could be protracted statistically by clustering analysis and further consolidated by nucleotide variations of one mitochondrial and one nuclear gene to differentiate hybrids from their parents. Out of 21 morphometric features, 6 were used for clustering analysis that exhibited discrete separation among rohu, catla, and their hybrids when the data points were plotted in a low-dimensional 2-D plane using the first 2 principal components. Out of 40 selected single nucleotide polymorphism (SNP) positions of the COX1 gene, hybrid showed 100% similarity with catla. Concerning SNP similarity of the 18S rRNA nuclear gene, the hybrid showed 100% similarity with rohu but not with catla; exhibiting its probable parental inheritance. CONCLUSIONS: Along with morphometric analysis, the SNP comparison study together points towards strong evidence of interspecific hybridization between rohu and catla, as these hybrids share both morphological and molecular differences with either parent. However, this study will help screen the hybrids from their wild parents, as a strategy for conservational management.


Asunto(s)
Carpas , Hibridación Genética , Polimorfismo de Nucleótido Simple , Animales , Carpas/genética , Carpas/anatomía & histología , Hibridación Genética/genética , Polimorfismo de Nucleótido Simple/genética , India , ARN Ribosómico 18S/genética , Filogenia , Cyprinidae/genética , Cyprinidae/anatomía & histología , Quimera/genética , Análisis por Conglomerados
9.
Nature ; 561(7721): 113-116, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30135579

RESUMEN

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Asunto(s)
Hominidae/genética , Hibridación Genética/genética , Hombre de Neandertal/genética , Alelos , Animales , Padre , Femenino , Flujo Génico/genética , Genoma , Genómica , Historia Antigua , Humanos , Masculino , Madres , Factores de Tiempo
10.
PLoS Genet ; 17(10): e1009810, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634032

RESUMEN

While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize's global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations. Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.


Asunto(s)
Zea mays/genética , Adaptación Fisiológica/genética , Inversión Cromosómica/genética , Mapeo Cromosómico/métodos , Genoma de Planta/genética , Haplotipos/genética , Hibridación Genética/genética , México
11.
PLoS Genet ; 17(1): e1008871, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465111

RESUMEN

Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species.


Asunto(s)
Cryptococcus neoformans/genética , Hibridación Genética/genética , Meiosis/genética , Aislamiento Reproductivo , Cruzamientos Genéticos , Cryptococcus neoformans/fisiología , Genoma Fúngico/genética , Recombinación Homóloga/genética , Humanos , Proteína 2 Homóloga a MutS/genética , Especificidad de la Especie
12.
PLoS Genet ; 17(8): e1009744, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424906

RESUMEN

Postzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. The overexpression of the two proteins also leads to mitotic defects, a misregulation in the expression of transposable elements and decreased fertility in pure species. In this work, we describe a distinct six subunit protein complex containing HMR and LHR and analyse the effect of Hmr mutations on complex integrity and function. Our experiments suggest that HMR needs to bring together components of centromeric and pericentromeric chromatin to fulfil its physiological function and to cause hybrid male lethality.


Asunto(s)
Proteínas de Drosophila/genética , Aislamiento Reproductivo , Animales , Centrómero/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila simulans/genética , Drosophila simulans/metabolismo , Genes Letales/genética , Especiación Genética , Hibridación Genética/genética , Reproducción/genética
13.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518223

RESUMEN

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii-enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


Asunto(s)
Arachis/genética , Productos Agrícolas/genética , Semillas/genética , África , Asia , Mapeo Cromosómico/métodos , ADN de Plantas/genética , Marcadores Genéticos/genética , Variación Genética/genética , Genoma de Planta/genética , Hibridación Genética/genética , Oceanía , Fitomejoramiento/métodos , Especificidad de la Especie
14.
Anim Biotechnol ; 35(1): 2383261, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091224

RESUMEN

The aim of this study was to analyze the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid mutton sheep using ASReml software, in order to provide theoretical basis for screening the optimal hybriding combinations and accelerating the breeding process of new breeds of specialized housed-feeding mutton sheep. We selected the wellgrown hybrid Southhu (Southdown × Hu sheep) and Dorhu (Dorset × Hu sheep) sheep as the research objects, constructed weight correction formulae for SH and DH sheep at 60 and 180 days; and used ASReml software to investigate the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid sheep. The results showed that the birth month and birth type were found significant for all traits (p < 0.001); the heritability of maternal effects ranged from 0.0709 to 0.1859. It was found that both SH and DH sheep emerged the potential for rapid early growth and development, early growth traits are significantly affected by maternal genetic effects, thereby the maternal effect should be taken into consideration for the purpose of improving accuracy in parameter estimations and therefore increasing the success of breeding programs.


Asunto(s)
Cruzamiento , Animales , Ovinos/genética , Femenino , Hibridación Genética/genética , Programas Informáticos , Masculino , Peso Corporal/genética , Oveja Doméstica/genética , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/fisiología
15.
PLoS Genet ; 16(10): e1009038, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33075065

RESUMEN

Recent biological invasions offer 'natural' laboratories to understand the genetics and ecology of adaptation, hybridization, and range limits. One of the most impressive and well-documented biological invasions of the 20th century began in 1957 when Apis mellifera scutellata honey bees swarmed out of managed experimental colonies in Brazil. This newly-imported subspecies, native to southern and eastern Africa, both hybridized with and out-competed previously-introduced European honey bee subspecies. Populations of scutellata-European hybrid honey bees rapidly expanded and spread across much of the Americas in less than 50 years. We use broad geographic sampling and whole genome sequencing of over 300 bees to map the distribution of scutellata ancestry where the northern and southern invasions have presently stalled, forming replicated hybrid zones with European bee populations in California and Argentina. California is much farther from Brazil, yet these hybrid zones occur at very similar latitudes, consistent with the invasion having reached a climate barrier. At these range limits, we observe genome-wide clines for scutellata ancestry, and parallel clines for wing length that span hundreds of kilometers, supporting a smooth transition from climates favoring scutellata-European hybrid bees to climates where they cannot survive winter. We find no large effect loci maintaining exceptionally steep ancestry transitions. Instead, we find most individual loci have concordant ancestry clines across South America, with a build-up of somewhat steeper clines in regions of the genome with low recombination rates, consistent with many loci of small effect contributing to climate-associated fitness trade-offs. Additionally, we find no substantial reductions in genetic diversity associated with rapid expansions nor complete dropout of scutellata ancestry at any individual loci on either continent, which suggests that the competitive fitness advantage of scutellata ancestry at lower latitudes has a polygenic basis and that scutellata-European hybrid bees maintained large population sizes during their invasion. To test for parallel selection across continents, we develop a null model that accounts for drift in ancestry frequencies during the rapid expansion. We identify several peaks within a larger genomic region where selection has pushed scutellata ancestry to high frequency hundreds of kilometers past the present cline centers in both North and South America and that may underlie high-fitness traits driving the invasion.


Asunto(s)
Abejas/genética , Genoma de los Insectos/genética , Hibridación Genética/genética , Selección Genética/genética , África Oriental , Américas , Animales , Argentina , Brasil , California , Miel , Hibridación de Ácido Nucleico , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
16.
J Helminthol ; 97: e29, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927601

RESUMEN

Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.


Asunto(s)
Helmintos , Metagenómica , Interacciones Huésped-Parásitos/fisiología , Helmintos/clasificación , Helmintos/genética , Hibridación Genética/genética , Variación Genética , Mapeo Cromosómico , Resistencia a Medicamentos/genética , Evolución Biológica , Parasitología/tendencias
17.
Plant J ; 106(3): 672-688, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547826

RESUMEN

Polyploidization is a well-known speciation and adaptation mechanism. Traces of former polyploidization events were discovered within many genomes, and especially in plants. Allopolyploidization by interspecific hybridization between two species is common. Among hybrid plants, many are domesticated species of agricultural interest and many of their genomes and of their presumptive parents have been sequenced. Hybrid genomes remain challenging to analyse because of the presence of multiple subgenomes. The genomes of hybrids often undergo rearrangement and degradation over time. Based on 10 hybrid plant genomes from six different genera, with hybridization dating from 10,000 to 5 million years ago, we assessed subgenome degradation, subgenomic intermixing and biased subgenome fractionation. The restructuring of hybrid genomes does not proceed proportionally with the age of the hybrid. The oldest hybrids in our data set display completely different fates: whereas the subgenomes of the tobacco plant Nicotiana benthamiana are in an advanced stage of degradation, the subgenomes of quinoa (Chenopodium quinoa) are exceptionally well conserved by structure and sequence. We observed statistically significant biased subgenome fractionation in seven out of 10 hybrids, which had different ages and subgenomic intermixing levels. Hence, we conclude that no correlation exists between biased fractionation and subgenome intermixing. Lastly, domestication may encourage or hinder subgenome intermixing, depending on the evolutionary context. In summary, comparative analysis of hybrid genomes and their presumptive parents allowed us to determine commonalities and differences between their evolutionary fates. In order to facilitate the future analysis of further hybrid genomes, we automated the analysis steps within manticore, which is publicly available at https://github.com/MatteoSchiavinato/manticore.git.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Tetraploidía , Brassica/genética , Chenopodium quinoa/genética , Domesticación , Hibridación Genética/genética , Plantas/genética , Nicotiana/genética
18.
Plant Mol Biol ; 108(1-2): 1-14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34846608

RESUMEN

KEY MESSAGE: Developing embryo and endosperm of sorghum show substantial and multifaceted differences in gene expression and alternative splicing, which are potentially relevant to heterosis. Differential regulation of gene expression and alternative splicing (AS) are major molecular mechanisms dictating plant growth and development, as well as underpinning heterosis in F1 hybrids. Here, using deep RNA-sequencing we analyzed differences in genome-wide gene expression and AS between developing embryo and endosperm, and between F1 hybrids and their pure-line parents in sorghum. We uncover dramatic differences in both gene expression and AS between embryo and endosperm with respect to gene features and functions, which are consistent with the fundamentally different biological roles of the two tissues. Accordingly, F1 hybrids showed substantial and multifaceted differences in gene expression and AS compared with their pure-line parents, again with clear tissue specificities including extents of difference, genes involved and functional enrichments. Our results provide useful transcriptome resources as well as novel insights for further elucidation of seed yield heterosis in sorghum and related crops.


Asunto(s)
Empalme Alternativo/genética , Endospermo/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Endospermo/genética , Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Genética/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Especificidad de la Especie
19.
Mol Genet Genomics ; 297(1): 241-262, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35031862

RESUMEN

Southwest China was the crossroad for the initial settler people of East Asia, which shows the highest diversity in languages and genetics. This region played a significant role in the formation of the genetic makeup of the proto-Hmong-Mien-speaking people and in the north-to-south human expansion during the Neolithic-to-historic transformation. Their genetic history covering migration events and the admixture processes still needs to be further explored. Therefore, in the current study, we have generated genome-wide data from three genomic aspects covering autosomal, mitochondrial and Y-chromosomal regions in 260 Hmong-Mien, Tibeto-Burman, and Sinitic people from 29 different southwestern Chinese groups, and further analyzed them with 2676 published modern and ancient Eurasian genomes. Here, we have noticed a new southwestern East Asian genetic cline composed of the Hmong-Mien-specific ancestry enriched in modern Hmong and Pathen. This newly identified southern inland East Asian lineage contributed to a great extent of the gene pool in the modern southern East Asians. We also have observed genetic substructure among Hmong-Mien-speaking populations. The southern Hmong-Mien-speaking people showed more genetic affinity with modern Tai-Kadai/Austroasiatic people, while the northern Hmong-Mien speakers expressed a closer genetic connection with the Neolithic-to-modern northern East Asians. Moreover, southwestern Sinitic populations had a strong genomic affinity with the adjacent Hmong-Mien-speaking populations and the lowlander Tibeto-Burman-speaking populations, which suggested the large-scale genetic admixture occurred between them. Allele-sharing-based qpAdm/qpGraph results further confirmed that all included southwestern Chinese populations could be modeled as a mixed result of the major ancestry component from the northern millet farmers in the Yellow River basin and the minor ancestry component from the southern rice farmers in the Yangtze River basin. Usually, this newly identified Hmong-Mien-associated southern East Asian ancestry could improve our understanding of the full-scale genetic landscape of the evolutionary and admixture history of southwestern East Asians. Further ancient genomic studies from southeastern China are required to shed deeper light on our established phylogeny context.


Asunto(s)
Pueblo Asiatico/genética , Etnicidad/genética , Migrantes , Pueblo Asiatico/etnología , China/etnología , Etnicidad/estadística & datos numéricos , Femenino , Flujo Genético , Especiación Genética , Variación Genética , Genética de Población , Geografía , Migración Humana , Humanos , Hibridación Genética/genética , Masculino , Filogenia , Migrantes/estadística & datos numéricos
20.
Nature ; 536(7617): 419-24, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27459054

RESUMEN

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Asunto(s)
Agricultura/historia , Genómica , Migración Humana/historia , Filogenia , Grupos Raciales/genética , África Oriental , Animales , Armenia , Asia , ADN/análisis , Europa (Continente) , Historia Antigua , Humanos , Hibridación Genética/genética , Irán , Israel , Jordania , Hombre de Neandertal/genética , Filogeografía , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA