RESUMEN
In addition to their well-defined recycling function, lysosomes act as metabolic signaling hubs that adjust cellular metabolism according to the availability of nutrients and growth factors by regulating metabolic kinases and transcription factors on their surface. Moreover, lysosomal hydrolases and ions released to cytosol or extracellular space have recently emerged as important regulators of various cellular processes from cell death to cell division. To view this SnapShot, open or download the PDF.
Asunto(s)
Lisosomas/metabolismo , Lisosomas/fisiología , Autofagia/fisiología , Citosol/metabolismo , Espacio Extracelular/metabolismo , Humanos , Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismoRESUMEN
ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.
Asunto(s)
Antibacterianos/farmacología , Formas L/efectos de los fármacos , Muramidasa/metabolismo , beta-Lactamas/farmacología , Animales , Bacillus subtilis/efectos de los fármacos , Bacteriólisis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Hidrolasas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Viabilidad Microbiana/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Penicilina G/farmacología , Proteínas de Unión a las Penicilinas , Peptidoglicano/metabolismo , Profagos/efectos de los fármacos , Células RAW 264.7RESUMEN
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Cetosteroides/química , Pseudomonas/enzimología , Esteroide Isomerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Expresión Génica , Hidrolasas/genética , Hidrolasas/metabolismo , Cetosteroides/metabolismo , Cinética , Modelos Químicos , Simulación de Dinámica Molecular , Mutación , Pseudomonas/química , Pseudomonas/genética , Espectrofotometría Infrarroja/métodos , Electricidad Estática , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , TermodinámicaRESUMEN
ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.
Asunto(s)
Canales KATP/química , Canales KATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Mamíferos/metabolismo , Mesocricetus , Ratones , Modelos Moleculares , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismoRESUMEN
Plastic production reached 400 million tons in 2022 (ref. 1), with packaging and single-use plastics accounting for a substantial amount of this2. The resulting waste ends up in landfills, incineration or the environment, contributing to environmental pollution3. Shifting to biodegradable and compostable plastics is increasingly being considered as an efficient waste-management alternative4. Although polylactide (PLA) is the most widely used biosourced polymer5, its biodegradation rate under home-compost and soil conditions remains low6-8. Here we present a PLA-based plastic in which an optimized enzyme is embedded to ensure rapid biodegradation and compostability at room temperature, using a scalable industrial process. First, an 80-fold activity enhancement was achieved through structure-based rational engineering of a new hyperthermostable PLA hydrolase. Second, the enzyme was uniformly dispersed within the PLA matrix by means of a masterbatch-based melt extrusion process. The liquid enzyme formulation was incorporated in polycaprolactone, a low-melting-temperature polymer, through melt extrusion at 70 °C, forming an 'enzymated' polycaprolactone masterbatch. Masterbatch pellets were integrated into PLA by melt extrusion at 160 °C, producing an enzymated PLA film (0.02% w/w enzyme) that fully disintegrated under home-compost conditions within 20-24 weeks, meeting home-composting standards. The mechanical and degradation properties of the enzymated film were compatible with industrial packaging applications, and they remained intact during long-term storage. This innovative material not only opens new avenues for composters and biomethane production but also provides a feasible industrial solution for PLA degradation.
Asunto(s)
Plásticos Biodegradables , Biodegradación Ambiental , Enzimas Inmovilizadas , Hidrolasas , Poliésteres , Ingeniería de Proteínas , Plásticos Biodegradables/química , Plásticos Biodegradables/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Hidrolasas/metabolismo , Hidrolasas/química , Poliésteres/química , Poliésteres/metabolismo , Suelo/química , Temperatura , Estabilidad de Enzimas , CompostajeRESUMEN
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.
Asunto(s)
Peso Corporal , Ingestión de Alimentos , Hidrolasas , Obesidad , Taurina , Animales , Femenino , Humanos , Masculino , Ratones , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Homeostasis , Hidrolasas/deficiencia , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Riñón/metabolismo , Hígado/metabolismo , Hígado/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/enzimología , Taurina/metabolismo , Taurina/análogos & derivados , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ácido Acético/metabolismo , Ejercicio Físico , Índice de Masa Corporal , Pérdida de Peso , Metabolismo Secundario , Metabolismo Energético , Tronco Encefálico/metabolismoRESUMEN
The liver harbors a distinct capacity for endogenous regeneration; however, liver regeneration is often impaired in disease and therefore insufficient to compensate for the loss of hepatocytes and organ function. Here we describe a functional genetic approach for the identification of gene targets that can be exploited to increase the regenerative capacity of hepatocytes. Pools of small hairpin RNAs (shRNAs) were directly and stably delivered into mouse livers to screen for genes modulating liver regeneration. Our studies identify the dual-specific kinase MKK4 as a master regulator of liver regeneration. MKK4 silencing robustly increased the regenerative capacity of hepatocytes in mouse models of liver regeneration and acute and chronic liver failure. Mechanistically, induction of MKK7 and a JNK1-dependent activation of the AP1 transcription factor ATF2 and the Ets factor ELK1 are crucial for increased regeneration of hepatocytes with MKK4 silencing.
Asunto(s)
Diferenciación Celular , Hepatocitos/citología , Hepatocitos/fisiología , Hígado/fisiología , MAP Quinasa Quinasa 4/genética , Animales , Ciclo Celular , Elementos Transponibles de ADN , Fibrosis , Técnicas de Silenciamiento del Gen , Hidrolasas/genética , Hidrolasas/metabolismo , Hígado/citología , Hígado/lesiones , Hígado/patología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , Ratones , Interferencia de ARN , ARN Interferente Pequeño/metabolismoRESUMEN
Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in Salmonella typhimurium. We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic pldB-yigL messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes.
Asunto(s)
Glucosa/metabolismo , Hidrolasas/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Salmonella typhimurium/metabolismo , Secuencia de Bases , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrolasas/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/metabolismo , Operón , Monoéster Fosfórico Hidrolasas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella typhimurium/enzimología , Salmonella typhimurium/genéticaRESUMEN
Plastic waste poses an ecological challenge1-3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling4. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste5, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products6-10. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics11. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Asunto(s)
Hidrolasas , Aprendizaje Automático , Tereftalatos Polietilenos , Ingeniería de Proteínas , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Plásticos , Tereftalatos Polietilenos/metabolismoRESUMEN
Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.
Asunto(s)
Hidrolasas , Synechocystis , Arginasa/metabolismo , Proteínas Bacterianas/metabolismo , Guanidina/metabolismo , Hidrolasas/metabolismo , Nitrógeno/metabolismoRESUMEN
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Asunto(s)
ADP-Ribosilación/fisiología , Adenosina Difosfato/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Humanos , Hidrolasas/clasificación , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.
Asunto(s)
Fagosomas , Canales de Dos Poros , Ratones , Animales , Fagosomas/metabolismo , Lisosomas/metabolismo , Hidrolasas/metabolismo , Colesterol/metabolismoRESUMEN
Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.
Asunto(s)
Proteínas de Drosophila , Fertilidad , Espermatogénesis , Tirosina , Animales , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tirosina/metabolismo , Tirosina/análogos & derivados , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila/genética , Drosophila/metabolismo , Animales Modificados Genéticamente , Hidrolasas/metabolismo , Hidrolasas/genéticaRESUMEN
Complex metabolic diseases such as diabetes and non-alcoholic fatty liver disease have been associated with aberrant lipid metabolism and lipotoxicity. To maintain lipid homeostasis and escape lipotoxicity, cells deploy a plethora of mechanisms, the most fascinating of which relying on a sense-and-response circuit. New work by Volkmar et al reveals an auto-regulated pathway formed by a lipid hydrolase and a lipid-sensitive E3 ubiquitin ligase playing hide-and-seek to warrant membrane function in stressed cells.
Asunto(s)
Hígado , Ubiquitina , Retículo Endoplásmico , Hidrolasas/metabolismo , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.
Asunto(s)
Hidrolasas , Fluidez de la Membrana , Animales , Ácidos Grasos/metabolismo , Hidrolasas/metabolismo , Mamíferos , Proteínas de la Membrana/metabolismo , Fosfolípidos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Unlocking the potential of protein arginine deiminase 4 (PAD4) as a drug target for rheumatoid arthritis requires a deeper understanding of its regulation. In this study, we use unbiased antibody selections to identify functional antibodies capable of either activating or inhibiting PAD4 activity. Through cryogenic-electron microscopy, we characterized the structures of these antibodies in complex with PAD4 and revealed insights into their mechanisms of action. Rather than steric occlusion of the substrate-binding catalytic pocket, the antibodies modulate PAD4 activity through interactions with allosteric binding sites adjacent to the catalytic pocket. These binding events lead to either alteration of the active site conformation or the enzyme oligomeric state, resulting in modulation of PAD4 activity. Our study uses antibody engineering to reveal new mechanisms for enzyme regulation and highlights the potential of using PAD4 agonist and antagonist antibodies for studying PAD4-dependency in disease models and future therapeutic development.
Asunto(s)
Arginina Deiminasa Proteína-Tipo 4 , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Arginina Deiminasa Proteína-Tipo 4/química , Humanos , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Hidrolasas/metabolismo , Hidrolasas/química , Desiminasas de la Arginina Proteica/metabolismo , Desiminasas de la Arginina Proteica/químicaRESUMEN
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Asunto(s)
Hidrolasas/química , Hidrolasas/metabolismo , Plásticos/química , Plásticos/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Ingeniería de Proteínas , Reciclaje , Actinobacteria/enzimología , Burkholderiales/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Pruebas de Enzimas , Estabilidad de Enzimas , Fusarium/enzimología , Modelos Moleculares , Ácidos Ftálicos/metabolismo , Polimerizacion , ThermobifidaRESUMEN
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.
Asunto(s)
Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/patogenicidad , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Secuencias de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Estabilidad de Enzimas , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Genes Esenciales , Hidrolasas/química , Hidrolasas/metabolismo , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/biosíntesis , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Periplasma/química , Periplasma/metabolismo , Unión Proteica , VirulenciaRESUMEN
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/ß-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Asunto(s)
Cardiolipinas , Hidrolasas , Animales , Masculino , Ratones , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones de Colaboración Cruzada/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Lipidómica , Fosfatidilcolinas/genética , Fosfolípidos/genética , Fosfolípidos/metabolismoRESUMEN
The Gram-negative bacterial cell envelope is a complex multilayered structure comprising a bilayered phospholipid (PL) membrane that surrounds the cytoplasm (inner membrane or IM) and an asymmetric outer membrane (OM) with PLs in the inner leaflet and lipopolysaccharides in the outer leaflet. Between these two layers is the periplasmic space, which contains a highly cross-linked mesh-like glycan polymer, peptidoglycan (PG). During cell expansion, coordinated synthesis of each of these components is required to maintain the integrity of the cell envelope; however, it is currently not clear how such coordination is achieved. In this study, we show that a cross-link-specific PG hydrolase couples the expansion of PG sacculus with that of PL synthesis in the Gram-negative model bacterium, Escherichia coli. We find that unregulated activity of a PG hydrolytic enzyme, MepS is detrimental for growth of E. coli during fatty acid (FA)-limiting conditions. Further genetic and biochemical analyses revealed that cellular availability of FA or PL alters the post-translational stability of MepS by modulating the proteolytic activity of a periplasmic adaptor-protease complex, NlpI-Prc toward MepS. Our results indicate that loss of OM lipid asymmetry caused by alterations in PL abundance leads to the generation of a signal to the NlpI-Prc complex for the stabilization of MepS, which subsequently cleaves the cross-links to facilitate expansion of PG. In summary, our study shows the existence of a molecular cross-talk that enables coordinated expansion of the PG sacculus with that of membrane synthesis for balanced cell-envelope biogenesis.