Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(5): 1115-1131.e15, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442404

RESUMEN

Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.


Asunto(s)
Dieta Alta en Grasa , Cuerpos Cetónicos/metabolismo , Células Madre/metabolismo , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/farmacología , Anciano de 80 o más Años , Animales , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hidroximetilglutaril-CoA Sintasa/deficiencia , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Intestinos/citología , Intestinos/patología , Masculino , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Adulto Joven
2.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38788716

RESUMEN

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Asunto(s)
Proliferación Celular , Hidroximetilglutaril-CoA Sintasa , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácido Mevalónico/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Transducción de Señal , Degrones , Proteínas Adaptadoras Transductoras de Señales
3.
J Cell Mol Med ; 28(6): e18137, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445791

RESUMEN

Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Interleucina-7/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , MicroARNs/genética , Hidroximetilglutaril-CoA Sintasa
4.
J Transl Med ; 22(1): 93, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263056

RESUMEN

BACKGROUND: Pancreatic neuroendocrine neoplasms (pNENs) are relatively rare. Hypoxia and lipid metabolism-related gene acetyl-CoA synthetase 2 (ACSS2) is involved in tumor progression, but its role in pNENs is not revealed. This study showed that hypoxia can upregulate ACSS2, which plays an important role in the occurrence and development of pNENs through lipid metabolism reprogramming. However, the precise role and mechanisms of ACSS2 in pNENs remain unknown. METHODS: mRNA and protein levels of ACSS2 and 3-hydroxy-3-methylglutaryl-CoA synthase1 (HMGCS1) were detected using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The effects of ACSS2 and HMGCS1 on cell proliferation were examined using CCK-8, colony formation assay and EdU assay, and their effects on cell migration and invasion were examined using transwell assay. The interaction between ACSS2 and HMGCS1 was verified by Co-immunoprecipitation (Co-IP) experiments, and the functions of ACSS2 and HMGCS1 in vivo were determined by nude mouse xenografts. RESULTS: We demonstrated that hypoxia can upregulate ACSS2 while hypoxia also promoted the progression of pNENs. ACSS2 was significantly upregulated in pNENs, and overexpression of ACSS2 promoted the progression of pNENs and knockdown of ACSS2 and ACSS2 inhibitor (ACSS2i) treatment inhibited the progression of pNENs. ACSS2 regulated lipid reprogramming and the PI3K/AKT/mTOR pathway in pNENs, and ACSS2 regulated lipid metabolism reprogramming through the PI3K/AKT/mTOR pathway. Co-IP experiments indicated that HMGCS1 interacted with ACSS2 in pNENs. Overexpression of HMGCS1 can reverse the enhanced lipid metabolism reprogramming and tumor-promoting effects of knockdown of ACSS2. Moreover, overexpression of HMGCS1 reversed the inhibitory effect of knockdown of ACSS2 on the PI3K/AKT/mTOR pathway. CONCLUSION: Our study revealed that hypoxia can upregulate the lipid metabolism-related gene ACSS2, which plays a tumorigenic effect by regulating lipid metabolism through activating the PI3K/AKT/mTOR pathway. In addition, HMGCS1 can reverse the oncogenic effects of ACSS2, providing a new option for therapeutic strategy.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Reprogramación Metabólica , Serina-Treonina Quinasas TOR , Lípidos , Acetato CoA Ligasa , Hidroximetilglutaril-CoA Sintasa
5.
Respir Res ; 25(1): 176, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658970

RESUMEN

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Asunto(s)
Regulación hacia Abajo , Fibroblastos , Hidroximetilglutaril-CoA Sintasa , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Bleomicina/toxicidad , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Metabolismo de los Lípidos/fisiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética
6.
Exp Eye Res ; 245: 109966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857822

RESUMEN

The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (ß-HB). Prior work, based on detecting ß-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export ß-HB across the apical membrane. Here, we compare the accuracy of measuring ß-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of ß-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete ß-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming ß-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce ß-HB. Altogether, we substantiate ß-HB secretion in RPE but find that the secretion is equal apically and basally, RPE ß-HB can derive from ketogenic amino acids or fatty acids, and accurate ß-HB assessment requires mass spectrometric analysis.


Asunto(s)
Ácido 3-Hidroxibutírico , Cuerpos Cetónicos , Epitelio Pigmentado de la Retina , Epitelio Pigmentado de la Retina/metabolismo , Cuerpos Cetónicos/metabolismo , Células Cultivadas , Ácido 3-Hidroxibutírico/metabolismo , Humanos , Pruebas de Enzimas/métodos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Espectrometría de Masas , Animales
7.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760545

RESUMEN

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa , Hígado , Ratones Endogámicos C57BL , Tacrolimus , Animales , Tacrolimus/farmacología , Ratones , Masculino , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Inmunosupresores/farmacología , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Línea Celular
8.
Ecotoxicol Environ Saf ; 281: 116623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905939

RESUMEN

Diquat (DQ) is a commonly used bipyridine herbicide known for its toxic properties and adverse effects on individuals. However, the mechanism underlying DQ-induced damage remain elusive. Our research aimed to uncover the regulatory network involved in DQ-induced damage. We analyzed publicly accessible gene expression patterns and performed research using a DQ-induced damage animal model. The GSE153959 dataset from the Gene Expression Omnibus collection and the animal model of DQ-induced kidney injury were used to identify differentially expressed genes (DEGs). Pathways including the regulation of DNA-templated transcription in response to stress, RNA polymerase II transcription regulator complex and transcription coregulatory activity were shown to be enriched in 21 DEGs. We used least absolute shrinkage and selection operator (LASSO) regression analysis to find possible diagnostic biomarkers for DQ-induced damage. Then, we used an HK-2 cell model to confirm these results. Additionally, we confirmed that 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was the major gene associated with DQ-induced damage using multi-omics screening. The sample validation strongly suggested that HMGCS2 has promise as a diagnostic marker and may provide new targets for therapy in the context of DQ-induced damage.


Asunto(s)
Diquat , Hidroximetilglutaril-CoA Sintasa , Animales , Hidroximetilglutaril-CoA Sintasa/genética , Diquat/toxicidad , Herbicidas/toxicidad , Humanos , Línea Celular , Masculino , Riñón/efectos de los fármacos , Biomarcadores , Ratas
9.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928261

RESUMEN

Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body ß-Hydroxybutyrate (ßHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body ßHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge.


Asunto(s)
Dieta Alta en Grasa , Mucosa Intestinal , Yeyuno , Cuerpos Cetónicos , Permeabilidad , Humanos , Masculino , Mucosa Intestinal/metabolismo , Dieta Alta en Grasa/efectos adversos , Cuerpos Cetónicos/metabolismo , Adulto , Yeyuno/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Femenino , Animales , Ratones , Claudina-3/metabolismo
10.
J Biol Chem ; 298(12): 102678, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356901

RESUMEN

Metformin, an antidiabetic drug, shows some potent antitumor effects. However, the molecular mechanism of metformin in tumor suppression has not been clarified. Here, we provided evidence using in vitro and in vivo data that metformin inhibited mevalonate pathway by downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key enzyme in this pathway. Our results further demonstrated that metformin downregulated HMGCS1 expression through inhibition of transcription factor nuclear factor E2-related factor 2. In addition, we determined that HMGCS1 was highly expressed in human liver and lung cancer tissues and associated with lower survival rates. In summary, our study indicated that metformin suppresses tumorigenesis through inhibition of the nuclear factor E2-related factor 2-HMGCS1 axis, which might be a potential target in cancer prevention and treatment.


Asunto(s)
Metformina , Humanos , Metformina/farmacología , Hipoglucemiantes/farmacología , Ácido Mevalónico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Hidroximetilglutaril-CoA Sintasa/genética
11.
Clin Lab ; 69(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560864

RESUMEN

BACKGROUND: The aim was to investigate circ-HMGCS1 expression and its correlation with clinical features and survival in cervical cancer (CC) patients. METHODS: This prospective study recruited 100 patients with CC who underwent surgical resection. Circ-HMGCS1 expression was measured by RT-qPCR. Disease-free survival (DFS) and overall survival (OS) were recorded. RESULTS: Circ-HMGCS1 was upregulated in tumor tissues and had a good value in separating tumor tissues from normal tissues. Circ-HMGCS1 expression in tumor tissues was positively correlated with tumor size, lymph node metastasis, and FIGO stage. High circ-HMGCS1 expression predicted worse DFS and OS. CONCLUSIONS: circ-HMGCS1 serves as an indicator of survival and prognosis in CC patients.


Asunto(s)
ARN Circular , Neoplasias del Cuello Uterino , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa , Metástasis Linfática/fisiopatología , Pronóstico , Estudios Prospectivos , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Supervivencia sin Enfermedad , Adulto , Persona de Mediana Edad , Regulación hacia Arriba , Valor Predictivo de las Pruebas
12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835419

RESUMEN

Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.


Asunto(s)
Neoplasias Endometriales , Podosomas , Femenino , Humanos , Línea Celular Tumoral , Neoplasias Endometriales/patología , Hidroximetilglutaril-CoA Sintasa , Podosomas/fisiología , Receptores de Estrógenos/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Receptor Relacionado con Estrógeno ERRalfa
13.
Am J Physiol Renal Physiol ; 322(4): F460-F467, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35224990

RESUMEN

Mitochondrial hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme in ketogenesis. The liver expresses high levels of HMGCS2 constitutively as the main ketogenic organ. It has been suggested that the kidney could be ketogenic as HMGCS2 is expressed in the kidney during fasting and diabetic conditions. However, definitive proof of the capacity for the kidney to produce ketones is lacking. We demonstrated that during fasting, HMGCS2 expression is induced in the proximal tubule of the kidney and is peroxisome proliferator activated receptor-α dependent. Mice with kidney-specific Hmgcs2 deletion showed a minor, likely physiologically insignificant, decrease in circulating ketones during fasting. Conversely, liver-specific Hmgcs2 knockout mice exhibited a complete loss of fasting ketosis. Together, these findings indicate that renal HMGCS2 does not significantly contribute to global ketone production and that during fasting, the increase in circulating ketones is solely dependent on hepatic HMGCS2. Proximal tubule HMGCS2 serves functions other than systemic ketone provision.NEW & NOTEWORTHY The mitochondrial enzyme hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) catalyzes the rate-limiting step of ketogenesis. Although the liver constitutively expresses HMGCS2 and is considered the main ketogenic organ, HMGCS2 is induced in the kidney during fasting, leading to the proposal that the kidney contributes to fasting ketosis. We showed kidney HMGCS2 does not contribute to circulating ketones during fasting and cannot compensate for hepatic ketogenic insufficiency.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa/metabolismo , Cetosis , Animales , Ayuno , Hidroximetilglutaril-CoA Sintasa/genética , Cuerpos Cetónicos/metabolismo , Cetonas , Cetosis/metabolismo , Riñón/metabolismo , Ratones
14.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432116

RESUMEN

Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, ß-hydroxybutyrate (ß-HB) and acetoacetate (AcAc). ß-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that ß-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Cetonas/uso terapéutico , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular , Resultado del Tratamiento
15.
Br J Cancer ; 125(6): 865-876, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274945

RESUMEN

BACKGROUND: Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS: Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS: SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/ß-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS: SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.


Asunto(s)
Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Carcinoma Hepatocelular/patología , Regulación hacia Abajo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Neoplasias Hepáticas/patología , Hígado/embriología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Trasplante de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Vía de Señalización Wnt
16.
Plant Cell Physiol ; 62(1): 205-218, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33340324

RESUMEN

Little has been established on the relationship between the mevalonate (MVA) pathway and other metabolic pathways except for the sterol and glucosinolate biosynthesis pathways. In the MVA pathway, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to form 3-hydroxy-3-methylglutaryl-coenzyme A. Our previous studies had shown that, while the recombinant Brassica juncea HMGS1 (BjHMGS1) mutant S359A displayed 10-fold higher enzyme activity than wild-type (wt) BjHMGS1, transgenic tobacco overexpressing S359A (OE-S359A) exhibited higher sterol content, growth rate and seed yield than OE-wtBjHMGS1. Herein, untargeted proteomics and targeted metabolomics were employed to understand the phenotypic effects of HMGS overexpression in tobacco by examining which other metabolic pathways were affected. Sequential window acquisition of all theoretical mass spectra quantitative proteomics analysis on OE-wtBjHMGS1 and OE-S359A identified the misregulation of proteins in primary metabolism and cell wall modification, while some proteins related to photosynthesis and the tricarboxylic acid cycle were upregulated in OE-S359A. Metabolomic analysis indicated corresponding changes in carbohydrate, amino acid and fatty acid contents in HMGS-OEs, and F-244, a specific inhibitor of HMGS, was applied successfully on tobacco to confirm these observations. Finally, the crystal structure of acetyl-CoA-liganded S359A revealed that improved activity of S359A likely resulted from a loss in hydrogen bonding between Ser359 and acyl-CoA, which is evident in wtBjHMGS1. This work suggests that regulation of plant growth by HMGS can influence the central metabolic pathways. Furthermore, this study demonstrates that the application of the HMGS-specific inhibitor (F-244) in tobacco represents an effective approach for studying the HMGS/MVA pathway.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa/metabolismo , Redes y Vías Metabólicas , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Dimetilsulfóxido/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enlace de Hidrógeno , Hidroximetilglutaril-CoA Sintasa/antagonistas & inhibidores , Hidroximetilglutaril-CoA Sintasa/química , Lactonas/farmacología , Espectrometría de Masas , Redes y Vías Metabólicas/efectos de los fármacos , Estructura Terciaria de Proteína , Nicotiana/enzimología
17.
J Hepatol ; 75(2): 363-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887357

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. METHODS: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. RESULTS: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. CONCLUSIONS: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. LAY SUMMARY: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.


Asunto(s)
Colangiocarcinoma/genética , Hidroximetilglutaril-CoA Sintasa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos adversos , Anciano , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiología , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-fos/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
18.
Am J Physiol Heart Circ Physiol ; 321(4): H751-H755, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533402

RESUMEN

Lack of glucose uptake compromises metabolic flexibility and reduces energy efficiency in the diabetes mellitus (DM) heart. Although increased use of fatty acid to compensate glucose substrate has been studied, less is known about ketone body metabolism in the DM heart. Ketogenic diet reduces obesity, a risk factor for T2DM. How ketogenic diet affects ketone metabolism in the DM heart remains unclear. At the metabolic level, the DM heart differs from the non-DM heart because of altered metabolic substrate and the T1DM heart differs from the T2DM heart because of insulin levels. How these changes affect ketone body metabolism in the DM heart are poorly understood. Ketogenesis produces ketone bodies by using acetyl-CoA, whereas ketolysis consumes ketone bodies to produce acetyl-CoA, showing their opposite roles in the ketone body metabolism. Cardiac-specific transgenic upregulation of ketogenesis enzyme or knockout of ketolysis enzyme causes metabolic abnormalities leading to cardiac dysfunction. Empirical evidence demonstrates upregulated transcription of ketogenesis enzymes, no change in the levels of ketone body transporters, very high levels of ketone bodies, and reduced expression and activity of ketolysis enzymes in the T1DM heart. Based on these observations, I hypothesize that increased transcription and activity of cardiac ketogenesis enzyme suppresses ketolysis enzyme in the DM heart, which decreases cardiac energy efficiency. The T1DM heart exhibits highly upregulated ketogenesis compared with the T2DM heart because of the lack of insulin, which inhibits ketogenesis enzyme.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/etiología , Metabolismo Energético , Insulina/metabolismo , Cuerpos Cetónicos/metabolismo , Miocardio/metabolismo , Animales , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cetoacidosis Diabética/etiología , Cetoacidosis Diabética/metabolismo , Dieta Cetogénica , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Masculino
19.
Med Sci Monit ; 27: e929394, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33753712

RESUMEN

BACKGROUND Bladder cancer is a malignant tumor of the genitourinary system. Different subtypes of bladder cancer have different treatment methods and prognoses. Therefore, identifying hub genes affecting other genes is of great significance for the treatment of bladder cancer. MATERIAL AND METHODS We obtained expression profiles from the GSE13507 and GSE77952 datasets from the Gene Expression Omnibus database. First, principal component analysis was used to identify the difference in gene expression in different types of tissues. Differential expression analysis was used to find the differentially expressed genes between normal and tumor tissues, and between tumors with and without muscle infiltration. Further, based on differentially expressed genes, we constructed 2 decision trees for differentiating between tumor and normal tissues, and between muscle-infiltrating and non-muscle-infiltrating tumor tissues. A receiver operating characteristic curve was used to evaluate the prediction effect of the decision trees. RESULTS FAM107A and C8orf4 showed significantly lower expression in bladder cancer tissues than in normal tissues. Regarding muscle infiltration, CTHRC1 showed lower expression and HMGCS2 showed higher expression in non-muscle-infiltrating samples than in those with muscle infiltration. We constructed 2 decision trees for differentiating between tumor and normal tissue, and between tissues with and without muscle infiltration. Both decision trees showed good prediction results. CONCLUSIONS These newly discovered hub genes will be helpful in understanding the occurrence and development of different subtypes of bladder cancer, and will provide new therapeutic targets and biomarkers for bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria/clasificación , Neoplasias de la Vejiga Urinaria/genética , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Árboles de Decisión , Proteínas de la Matriz Extracelular/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Análisis de Componente Principal/métodos , Pronóstico , Curva ROC , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 115(13): 3380-3385, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531083

RESUMEN

Many reactions within a cell are thermodynamically unfavorable. To efficiently run some of those endergonic reactions, nature evolved intermediate-channeling enzyme complexes, in which the products of the first endergonic reactions are immediately consumed by the second exergonic reactions. Based on this concept, we studied how archaea overcome the unfavorable first reaction of isoprenoid biosynthesis-the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA catalyzed by acetoacetyl-CoA thiolases (thiolases). We natively isolated an enzyme complex comprising the thiolase and 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGCS) from a fast-growing methanogenic archaeon, Methanothermococcus thermolithotrophicus HMGCS catalyzes the second reaction in the mevalonate pathway-the exergonic condensation of acetoacetyl-CoA and acetyl-CoA to HMG-CoA. The 380-kDa crystal structure revealed that both enzymes are held together by a third protein (DUF35) with so-far-unknown function. The active-site clefts of thiolase and HMGCS form a fused CoA-binding site, which allows for efficient coupling of the endergonic thiolase reaction with the exergonic HMGCS reaction. The tripartite complex is found in almost all archaeal genomes and in some bacterial ones. In addition, the DUF35 proteins are also important for polyhydroxyalkanoate (PHA) biosynthesis, most probably by functioning as a scaffold protein that connects thiolase with 3-ketoacyl-CoA reductase. This natural and highly conserved enzyme complex offers great potential to improve isoprenoid and PHA biosynthesis in biotechnologically relevant organisms.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferasa/química , Acetil-CoA C-Acetiltransferasa/metabolismo , Acilcoenzima A/metabolismo , Archaea/enzimología , Hidroximetilglutaril-CoA Sintasa/química , Hidroximetilglutaril-CoA Sintasa/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA