Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.793
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2212196119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161944

RESUMEN

We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.


Asunto(s)
Hormona de Crecimiento Humana , Petromyzon , Animales , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Osmorregulación/genética , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Prolactina/genética , Prolactina/metabolismo , ARN Mensajero/metabolismo , Vertebrados/genética
2.
Proc Natl Acad Sci U S A ; 119(32): e2208855119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914126

RESUMEN

Wild-type (WT) mice maintain viable levels of blood glucose even when adipose stores are depleted by 6 d of 60% calorie restriction followed by a 23-h fast (hereafter designated as "starved" mice). Survival depends on ghrelin, an octanoylated peptide hormone. Mice that lack ghrelin suffer lethal hypoglycemia when subjected to the same starvation regimen. Ghrelin is known to stimulate secretion of growth hormone (GH), which in turn stimulates secretion of IGF-1 (insulin-like growth factor-1). In the current study, we found that starved ghrelin-deficient mice had a 90% reduction in plasma IGF-1 when compared with starved WT mice. Injection of IGF-1 in starved ghrelin-deficient mice caused a twofold increase in glucose production and raised blood glucose to levels seen in starved WT mice. Increased glucose production was accompanied by increases in plasma glycerol, fatty acids and ketone bodies, and hepatic triglycerides. All of these increases were abolished when the mice were treated with atglistatin, an inhibitor of adipose tissue triglyceride lipase. We conclude that IGF-1 stimulates adipose tissue lipolysis in starved mice and that this lipolysis supplies energy and substrates that restore hepatic gluconeogenesis. This action of IGF-1 in starved mice is in contrast to its known action in inhibiting adipose tissue lipase in fed mice. Surprisingly, the ghrelin-dependent maintenance of plasma IGF-1 in starved mice was not mediated by GH. Direct injection of GH into starved ghrelin-deficient mice failed to increase plasma IGF-1. These data call attention to an unsuspected role of IGF-1 in the adaptation to starvation.


Asunto(s)
Glucemia , Factor I del Crecimiento Similar a la Insulina , Inanición , Adaptación Fisiológica , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Ácidos Grasos/sangre , Ghrelina/metabolismo , Gluconeogénesis , Glicerol/sangre , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cuerpos Cetónicos/sangre , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lipólisis , Hígado/metabolismo , Ratones , Compuestos de Fenilurea/farmacología , Inanición/sangre , Inanición/metabolismo , Triglicéridos/metabolismo
3.
J Neurosci ; 43(40): 6816-6829, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37625855

RESUMEN

Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.


Asunto(s)
Hormona del Crecimiento , Somatostatina , Femenino , Masculino , Ratones , Animales , Somatostatina/metabolismo , Hormona del Crecimiento/metabolismo , Ansiedad , Miedo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Neuronas/metabolismo
4.
Biochem Biophys Res Commun ; 709: 149811, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38569244

RESUMEN

Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.


Asunto(s)
Aminoácidos , Hormona del Crecimiento , Animales , Ratones , Aminoácidos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Trastornos del Crecimiento , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , ARN Mensajero/genética
5.
Am J Pathol ; 193(6): 829-842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870529

RESUMEN

Growth hormone (GH) is a key mediator of skeletal growth. In humans, excess GH secretion due to pituitary adenoma, seen in patients with acromegaly, results in severe arthropathies. This study investigated the effects of long-term excess GH on the knee joint tissues. One year-old wild-type (WT) and bovine GH (bGH) transgenic mice were used as a model for excess GH. bGH mice showed increased sensitivity to mechanical and thermal stimuli, compared with WT mice. Micro-computed tomography analyses of the distal femur subchondral bone revealed significant reductions in trabecular thickness and significantly reduced bone mineral density of the tibial subchondral bone-plate associated with increased osteoclast activity in both male and female bGH compared with WT mice. bGH mice showed severe loss of matrix from the articular cartilage, osteophytosis, synovitis, and ectopic chondrogenesis. Articular cartilage loss in the bGH mice was associated with elevated markers of inflammation and chondrocyte hypertrophy. Finally, hyperplasia of synovial cells was associated with increased expression of Ki-67 and diminished p53 levels in the synovium of bGH mice. Unlike the low-grade inflammation seen in primary osteoarthritis, arthropathy caused by excess GH affects all joint tissues and triggers severe inflammatory response. Data from this study suggest that treatment of acromegalic arthropathy should involve inhibition of ectopic chondrogenesis and chondrocyte hypertrophy.


Asunto(s)
Acromegalia , Cartílago Articular , Humanos , Ratones , Masculino , Animales , Femenino , Bovinos , Lactante , Microtomografía por Rayos X , Ratones Transgénicos , Hormona del Crecimiento/metabolismo , Cartílago Articular/metabolismo , Artralgia/etiología , Inflamación , Hipertrofia
6.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369248

RESUMEN

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Asunto(s)
Quimiocina CCL19 , Hormona del Crecimiento , Prolactina , Sueño , Humanos , Movimiento Celular , Quimiocina CCL19/metabolismo , Hormona del Crecimiento/metabolismo , Prolactina/metabolismo , Sueño/fisiología
7.
Neuroendocrinology ; 114(6): 577-588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38368872

RESUMEN

INTRODUCTION: Acromegaly patients, in addition to the most prominent physical and endocrine changes, also exhibit a higher risk of cognitive dysfunction. However, the reasons and mechanisms underlying cognitive impairments in acromegaly patients remain unknown. METHODS: Acromegalic rats were induced by subcutaneous injection of tumor cells, with continuous monitoring of the body weight and hormones to confirm the occurrence of acromegaly. Behavioral assessments, including open field test, novel object recognition test, and Barnes maze test, were conducted to evaluate the animals' cognitive function. Western blotting, immunohistochemistry, and immunofluorescence techniques were employed to examine changes in the hippocampal tau protein, Aß, and associated signaling pathways. RESULTS: The tumor cells secreting growth hormone increased the secretion of growth hormone, resulting in changes in body size and endocrine functions, thus causing acromegaly. The acromegaly model showed deficiencies in working memory and spatial memory. Hyperphosphorylation of tau protein was observed in the hippocampus of the acromegaly model, but no Aß deposition was observed. The acromegaly model exhibits hippocampal growth hormone (GH) resistance, decreased expression of GH receptors, and subsequently reduced expression activity of the PI3K-Akt-GSK3ß signaling pathway, which is responsible for the hyperphosphorylation of tau protein. CONCLUSION: The prolonged elevation of GH and insulin-like growth factor 1 caused by acromegaly may lead to abnormalities in the SD rat's PI3K-Akt-GSK3ß signaling pathway, subsequently resulting in hyperphosphorylation of the hippocampal tau protein and cognitive impairment.


Asunto(s)
Acromegalia , Disfunción Cognitiva , Modelos Animales de Enfermedad , Hipocampo , Proteínas tau , Animales , Masculino , Ratas , Acromegalia/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Hormona del Crecimiento/metabolismo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aprendizaje por Laberinto/fisiología , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Proteínas tau/metabolismo
8.
Pediatr Res ; 96(1): 115-123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582946

RESUMEN

BACKGROUND: Growth hormone deficiency(GHD) and idiopathic short stature(ISS) are the primary causes of short stature in children. Animal experiments have revealed a link between growth hormone(GH), gut microbiota and metabolism, however, limited information is available from human trials. METHODS: Fecal samples collected from GHD (n = 36), ISS (n = 32) and healthy control (HC) children(n = 16) were subjected to microbiome (16 S rRNA gene sequencing) and metabolome (nuclear magnetic resonance,NMR) analyses. RESULTS: GHD, ISS and HC exhibit distinct differences in beta diversity of gut microbiota.In addition, short stature (GHD and ISS) exhibit higher relative abundance of Prevotellaceae_NK3B31_group at genus level compared to HC, whereas Rodentibacter, Rothia, and Pelomonas showed lower abundance. Additionally,Fusobacterium_mortiferum was identified as the characteristic species of GHD. Moreover, glucose metabolism, pyruvate metabolism and pyrimidine metabolism might play significant roles for distinguishing between GHD and normal GH groups (ISS and HC). Furthermore, a disease prediction model based on differential bacteria and metabolites between GHD and ISS exhibited high diagnostic value. CONCLUSION: These findings highlight the characteristics of different GH levels on the gut microbiota and metabolism in children, providing novel perspectives for early diagnosis and prognostic treatment of short stature with abnormal GH levels. IMPACT: The key message of our study is to identify human-relevant gut microbiota and host metabolic patterns that are interfered with growth hormone levels, and to develop biomarker models to identify short stature associated with growth hormone deficiency. We used idiopathic short stature as a control group for growth hormone deficiency, complementing the absence of height as a factor in the existing literature. Our study ultimately hopes to shed new light on the diagnosis and treatment of short stature children associated with growth hormone deficiency.


Asunto(s)
Heces , Microbioma Gastrointestinal , Trastornos del Crecimiento , Hormona de Crecimiento Humana , Humanos , Niño , Masculino , Femenino , Heces/microbiología , Hormona de Crecimiento Humana/metabolismo , Trastornos del Crecimiento/microbiología , Estudios de Casos y Controles , Metaboloma , Estatura , ARN Ribosómico 16S/genética , Enanismo Hipofisario/metabolismo , Enanismo Hipofisario/tratamiento farmacológico , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/sangre , Bacterias/metabolismo
9.
Physiol Plant ; 176(1): e14195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332400

RESUMEN

This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.


Asunto(s)
Brasinoesteroides , Pinellia , Brasinoesteroides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pinellia/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico , Citocininas/metabolismo , Plantas/metabolismo , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología
10.
Pituitary ; 27(5): 567-576, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38960990

RESUMEN

PURPOSE: Growth hormone (GH) is a central regulator of ß-cell proliferation, insulin secretion and sensitivity. Aim of this study was to investigate the effect of GH insensitivity on pancreatic ß-cell histomorphology and consequences for metabolism in vivo. METHODS: Pancreata from pigs with growth hormone receptor deficiency (GHR-KO, n = 12) were analyzed by unbiased quantitative stereology in comparison to wild-type controls (WT, n = 12) at 3 and 7-8.5 months of age. In vivo secretion capacity for insulin and glucose tolerance were assessed by intravenous glucose tolerance tests (ivGTTs) in GHR-KO (n = 3) and WT (n = 3) pigs of the respective age groups. RESULTS: Unbiased quantitative stereological analyses revealed a significant reduction in total ß-cell volume (83% and 73% reduction in young and adult GHR-KO vs. age-matched WT pigs; p < 0.0001) and volume density of ß-cells in the pancreas of GHR-KO pigs (42% and 39% reduction in young and adult GHR-KO pigs; p = 0.0018). GHR-KO pigs displayed a significant, age-dependent increase in the proportion of isolated ß-cells in the pancreas (28% in young and 97% in adult GHR-KO vs. age-matched WT pigs; p = 0.0009). Despite reduced insulin secretion in ivGTTs, GHR-KO pigs maintained normal glucose tolerance. CONCLUSION: GH insensitivity in GHR-KO pigs leads to decreased ß-cell volume and volume proportion of ß-cells in the pancreas, causing a reduced insulin secretion capacity. The increased proportion of isolated ß-cells in the pancreas of GHR-KO pigs highlights the dependency on GH stimulation for proper ß-cell maturation. Preserved glucose tolerance accomplished with decreased insulin secretion indicates enhanced sensitivity for insulin in GH insensitivity.


Asunto(s)
Prueba de Tolerancia a la Glucosa , Hormona del Crecimiento , Secreción de Insulina , Células Secretoras de Insulina , Insulina , Animales , Células Secretoras de Insulina/metabolismo , Porcinos , Insulina/metabolismo , Hormona del Crecimiento/metabolismo , Secreción de Insulina/fisiología , Receptores de Somatotropina/metabolismo , Masculino , Femenino , Tamaño de la Célula
11.
Gen Comp Endocrinol ; 346: 114404, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37940008

RESUMEN

Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.


Asunto(s)
Ardillas Terrestres , Hormona de Crecimiento Humana , Perciformes , Animales , Hormona del Crecimiento/metabolismo , Privación de Alimentos/fisiología , Factor de Transcripción STAT5/metabolismo , Ardillas Terrestres/genética , Ardillas Terrestres/metabolismo , Hígado/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hormona de Crecimiento Humana/metabolismo , Perciformes/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Peces/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Músculo Esquelético/metabolismo , ARN Mensajero/genética
12.
Endocr J ; 71(9): 827-837, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38910132

RESUMEN

Although growth hormone (GH) and prolactin (PRL) are usually recognized as pituitary hormones, their expression is not restricted to the adenohypophysis and can also be found in extra-pituitary tissues including placenta. Furthermore, GH, PRL, and their receptors structurally belong to the cytokine family of proteins, and indeed they have remarkable pleiotropic effects. In this review, we analyzed the biological roles of GH/PRL from an evolutionary perspective. We have recognized that the biological significance of GH/PRL can be summarized as follows: cytokines (metabokines) that regulate the shift of nutrients and even of whole bodies to live in the most appropriate environment(s) for conducting growth and reproduction. In this sense, the common keyword of the two metabokines is "shift" for environmental adaptation. Considering that these metabokines flexibly changed their biological roles, GH/PRL may have played important roles during vertebrate evolution.


Asunto(s)
Evolución Biológica , Hormona del Crecimiento , Prolactina , Humanos , Prolactina/metabolismo , Prolactina/fisiología , Animales , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/fisiología , Femenino , Reproducción/fisiología , Hormona de Crecimiento Humana/metabolismo , Hormona de Crecimiento Humana/fisiología
13.
Eur J Appl Physiol ; 124(8): 2285-2301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38446190

RESUMEN

PURPOSE: Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation. METHODS: Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO2peak) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies. RESULTS: Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC. CONCLUSION: (1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.


Asunto(s)
Ejercicio Físico , Líquido Extracelular , Hormona de Crecimiento Humana , Factor I del Crecimiento Similar a la Insulina , Piel , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Líquido Extracelular/metabolismo , Hormona del Crecimiento/sangre , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/sangre , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Piel/metabolismo , Piel/irrigación sanguínea , Sudoración/fisiología
14.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244423

RESUMEN

Optic neuropathies are leading causes of irreversible visual impairment and blindness, currently affecting more than 100 million people worldwide. Glaucoma is a group of optic neuropathies attributed to progressive degeneration of retinal ganglion cells (RGCs). We have previously demonstrated an increase in survival of RGCs by the activation of macrophages, whereas the inhibition of macrophages was involved in the alleviation on endotoxin-induced inflammation by antagonist of growth hormone-releasing hormone (GHRH). Herein, we hypothesized that GHRH receptor (GHRH-R) signaling could be involved in the survival of RGCs mediated by inflammation. We found the expression of GHRH-R in RGCs of adult rat retina. After optic nerve crush, subcutaneous application of GHRH agonist MR-409 or antagonist MIA-602 promoted the survival of RGCs. Both the GHRH agonist and antagonist increased the phosphorylation of Akt in the retina, but only agonist MR-409 promoted microglia activation in the retina. The antagonist MIA-602 reduced significantly the expression of inflammation-related genes Il1b, Il6, and Tnf Moreover, agonist MR-409 further enhanced the promotion of RGC survival by lens injury or zymosan-induced macrophage activation, whereas antagonist MIA-602 attenuated the enhancement in RGC survival. Our findings reveal the protective effect of agonistic analogs of GHRH on RGCs in rats after optic nerve injury and its additive effect to macrophage activation, indicating a therapeutic potential of GHRH agonists for the protection of RGCs against optic neuropathies especially in glaucoma.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/agonistas , Macrófagos/patología , Neuroprotección , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/antagonistas & inhibidores , Inflamación/genética , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neuroprotección/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas F344 , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción STAT3/metabolismo , Sermorelina/análogos & derivados , Sermorelina/farmacología , Transducción de Señal/efectos de los fármacos , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo , Zimosan/farmacología
15.
Biochem Genet ; 62(5): 3821-3840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38233694

RESUMEN

The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sulfuro de Hidrógeno , Factor I del Crecimiento Similar a la Insulina , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/líquido cefalorraquídeo , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/líquido cefalorraquídeo , Ratones , Humanos , Masculino , Sulfuro de Hidrógeno/farmacología , Hormona del Crecimiento/sangre , Hormona del Crecimiento/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Ratones Endogámicos C57BL
16.
Anim Biotechnol ; 35(1): 2346808, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38739483

RESUMEN

This study aimed to evaluate the effect of miR-23b-3p on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. The mRNA and protein levels of GH and miR-23b-3p target genes were measured by real time fluorescence quantitative PCR (qPCR) and Western blot, respectively. The target relationship of miR-23b-3p was validated by double luciferase reporter gene system. The results showed that GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-23b-3p-mi group than in the NC group (P<0.01), while GH mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.05). The result of bioinformatics analysis and double luciferase reporter gene system validation proved that miR-23b-3p targeted 3'UTR of pituitary specific transcription factor 1 (POU1F1). POU1F1 mRNA and protein levels were lower miR-23b-3p-mi group than in the NC group (P<0.01), while POU1F1 mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.01). These results demonstrated that miR-23b-3p could regulate GH expression in pituitary cells by regulating POU1F1 gene.


Asunto(s)
Hormona del Crecimiento , MicroARNs , Factor de Transcripción Pit-1 , Animales , Bovinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo , Hipófisis/metabolismo , Regulación de la Expresión Génica , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-39122107

RESUMEN

The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.


Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Músculo Esquelético , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/genética , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Células Cultivadas , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Receptores de Somatotropina/metabolismo , Receptores de Somatotropina/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-38876439

RESUMEN

External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.


Asunto(s)
Encéfalo , Hígado , Melatonina , Somatomedinas , Hormonas Tiroideas , Animales , Melatonina/metabolismo , Hígado/metabolismo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Hormonas Tiroideas/metabolismo , Somatomedinas/metabolismo , Somatomedinas/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , N-Acetiltransferasa de Arilalquilamina/genética , Perciformes/metabolismo , Perciformes/genética , Perciformes/crecimiento & desarrollo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/genética , Transducción de Señal , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Péptidos Similares a la Insulina
19.
Int J Sport Nutr Exerc Metab ; 34(1): 48-53, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917959

RESUMEN

The purpose of this study was to determine the effect of exercise intensity on the proportion and rate of carbohydrate oxidation and glucoregulatory hormone responses during recovery from exercise. Six physically active participants completed 1 hr of low-intensity (LI; 50% lactate threshold) or moderate-intensity (MI; 100% lactate threshold) exercise on separate days following a randomized counterbalanced design. During exercise and for 6 hr of recovery, samples of expired air were collected to determine oxygen consumption, respiratory exchange ratio, energy expenditure, and substrate oxidation rates. Blood samples were also collected to measure glucoregulatory hormones (catecholamines, GH) and metabolites (glucose, free fatty acids, lactate, pH, and bicarbonate). During exercise, respiratory exchange ratio, energy expenditure, and the proportion and rate of carbohydrate (CHO) oxidation were higher during MI compared with LI. However, during recovery from MI, respiratory exchange ratio and the proportion and rate of CHO oxidation were lower than preexercise levels and corresponding LI. During exercise and early recovery, catecholamines and growth hormone were higher in MI than LI, and there was a trend for higher levels of free fatty acids in the early recovery from MI compared with LI. In summary, CHO oxidation during exercise increases with exercise intensity but there is a preference for CHO sparing (and fat oxidation) during recovery from MI exercise compared with LI exercise. This exercise intensity-dependent shift in substrate oxidation during recovery is explained, in part, by the pattern of change of key glucoregulatory hormones including catecholamines and growth hormone and plasma fatty acid concentrations.


Asunto(s)
Ácidos Grasos no Esterificados , Hipoglucemia , Humanos , Ácidos Grasos no Esterificados/metabolismo , Oxidación-Reducción , Metabolismo Energético/fisiología , Glucosa , Consumo de Oxígeno/fisiología , Catecolaminas , Ácido Láctico , Hormona del Crecimiento/metabolismo , Glucemia/metabolismo
20.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892024

RESUMEN

Inflammation, demyelination, and axonal damage to the central nervous system (CNS) are the hallmarks of multiple sclerosis (MS) and its representative animal model, experimental autoimmune encephalomyelitis (EAE). There is scientific evidence for the involvement of growth hormone (GH) in autoimmune regulation. Previous data on the relationship between the GH/insulin like growth factor-1 (IGF-1) axis and MS/EAE are inconclusive; therefore, the aim of our study was to investigate the changes in the GH axis during acute monophasic EAE. The results show that the gene expression of Ghrh and Sst in the hypothalamus does not change, except for Npy and Agrp, while at the pituitary level the Gh, Ghrhr and Ghr genes are upregulated. Interestingly, the cell volume of somatotropic cells in the pituitary gland remains unchanged at the peak of the disease. We found elevated serum GH levels in association with low IGF-1 concentration and downregulated Ghr and Igf1r expression in the liver, indicating a condition resembling GH resistance. This is likely due to inadequate nutrient intake at the peak of the disease when inflammation in the CNS is greatest. Considering that GH secretion is finely regulated by numerous central and peripheral signals, the involvement of the GH/IGF-1 axis in MS/EAE should be thoroughly investigated for possible future therapeutic strategies, especially with a view to improving EAE disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/genética , Femenino , Ratas , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Hipotálamo/metabolismo , Hipotálamo/patología , Hipófisis/metabolismo , Hipófisis/patología , Receptores de Somatotropina/metabolismo , Receptores de Somatotropina/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/genética , Hígado/metabolismo , Hígado/patología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA