Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Intervalo de año de publicación
1.
Phytother Res ; 38(1): 400-410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992760

RESUMEN

The incubation period of COVID-19 symptoms, along with the proliferation and high transmission rate of the SARS-CoV-2 virus, is the cause of an uncontrolled epidemic worldwide. Vaccination is the front line of prevention, and antiinflammatory and antiviral drugs are the treatment of this disease. In addition, some herbal therapy approaches can be a good way to deal with this disease. The aim of this study was to evaluate the effect of propolis syrup with Hyoscyamus niger L. extract in hospitalized patients with COVID-19 with acute disease conditions in a double-blinded approach. The study was performed on 140 patients with COVID-19 in a double-blind, randomized, and multicentral approach. The main inclusion criterion was the presence of a severe type of COVID-19 disease. The duration of treatment with syrup was 6 days and 30 CC per day in the form of three meals. On Days 0, 2, 4, and 6, arterial blood oxygen levels, C-reactive protein (CRP), erythrocyte sedimentation rate, and white blood cell, as well as the patient's clinical symptoms such as fever and chills, cough and shortness of breath, chest pain, and other symptoms, were recorded and analyzed. Propolis syrup with H. niger L. significantly reduces cough from the second day, relieving shortness of breath on the fourth day, and significantly reduces CRP, weakness, and lethargy, as well as significantly increased arterial blood oxygen pressure on the sixth day compared to the placebo group (p < 0.05). The results in patients are such that in the most severe conditions of the disease 80% < SpO2 (oxygen saturation), the healing process of the syrup on reducing CRP and increasing arterial blood oxygen pressure from the fourth day is significantly different compared with the placebo group (p < 0.05). The use of syrup is associated with a reduction of 3.6 days in the hospitalization period compared with the placebo group. Propolis syrup with H. niger L. has effectiveness in the viral and inflammatory phases on clinical symptoms and blood parameters and arterial blood oxygen levels of patients with COVID-19. Also, it reduces referrals to the intensive care unit and mortality in hospitalized patients with COVID-19. So, this syrup promises to be an effective treatment in the great challenge of COVID-19.


Asunto(s)
COVID-19 , Hyoscyamus , Própolis , Humanos , SARS-CoV-2 , Própolis/uso terapéutico , Resultado del Tratamiento , Tos , Disnea , Oxígeno
2.
Biotechnol Lett ; 44(2): 333-340, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35182262

RESUMEN

OBJECTIVE: Unlike plant cell suspension culture, the proliferation of callus in bioreactors has received inadequate attention. The magnificent potential of plant callus becomes more appreciated as the research unfolds and promises interesting applications including the production of valuable metabolites, therapeutic antibodies, bioactive extracts with regenerating effects, and the generation of genetically improved plants. Issues such as the lack of 3D-access of the cells to the nutrients, using an interfering gelling substance as the support matrix, and the changes in the medium formulation during the growth phase were discouraging factors for extending research on this topic. Considering the existing drawbacks, a novel open-flow spray bioreactor (OFSB) was configured to circumvent the associated problems with the solid cell culture and promote the applicability of plant callus culture via improving the feeding strategy. METHODS: Applying similar subculture conditions, the proliferation of Arnebia pulchra and Hyoscyamus niger calli as the examples of two important plant families (Boraginaceae and Solanaceae) was studied in the OFSB in comparison with similar calli that grew in Petri dishes and jars. RESULTS: A. pulchra and H. niger calli obtained the weight gains of (%87.3 and %106.7) in the Petri dishes, (%208.7 and %226) in the jars, and (%288.6 and %320.0) in OFSB, respectively, while no significant changes were observed in the productivity indices of the examined calli. CONCLUSION: The simple design of OFSB bypasses most of the notorious problems associated with solid plant callus culture. OFSB technical features allow the bioreactor to be used for growth optimization of various types of plant calli in a cost-effective manner.


Asunto(s)
Boraginaceae , Hyoscyamus , Reactores Biológicos , Proliferación Celular , Medios de Cultivo , Humanos
3.
Cell Commun Signal ; 19(1): 61, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034759

RESUMEN

BACKGROUND: Chronic superphysiological glucose and insulin concentrations are known to trigger several tissue and organ failures, including insulin resistance, oxidative stress and chronic low-grade inflammation. Hence, the screening for molecules that may counteract such conditions is essential in current existing therapeutic strategies, thereby the use of medicinal plant derivatives represents a promising axis in this regard. METHODS: In this study, the effect of a selected traditional medicinal plant, Hyoscyamus albus from which, calystegines have been isolated, was investigated in an experimental model of hyperinsulinemia and hyperglycemia induced on HepG2 cells. The mRNA and protein expression levels of different insulin signaling, gluconeogenic and inflammatory pathway- related molecules were examined. Additionally, cell viability and apoptosis, oxidative stress extent and mitochondrial dysfunctions were assayed using flow cytometric and qRT-PCR techniques. RESULTS: Treatment of IR HepG2 cells with calystegines strongly protected the injured cells from apoptosis, oxidative stress and mitochondrial integrity loss. Interestingly, nortropane alkaloids efficiently regulated the impaired glucose metabolism in IR HepG2 cells, through the stimulation of glucose uptake and the modulation of SIRT1/Foxo1/G6PC/mTOR pathway, which is governing the hepatic gluconeogenesis. Furthermore, the alkaloidal extract restored the defective insulin signaling pathway, mainly by promoting the expression of Insr at the mRNA and protein levels. What is more, treated cells exhibited significant mitigated inflammatory response, as evidenced by the modulation and the regulation of the NF- κB/JNK/TLR4 axis and the downstream proinflammatory cytokines recruitment. CONCLUSION: Overall, the present investigation demonstrates that calystegines from Hyoscyamus albus provide cytoprotection to the HepG2 cells against insulin/glucose induced insulin resistance and apoptosis due to the regulation of SIRT1/Foxo1/G6PC/mTOR and NF-κB/JNK/TLR4 signaling pathways. Video Abstract.


Asunto(s)
Hyoscyamus/química , Hiperglucemia/tratamiento farmacológico , Hiperinsulinismo/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Nortropanos/uso terapéutico , Sirtuina 1/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Células Hep G2 , Humanos , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Nortropanos/farmacología , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas/química , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
4.
Phytother Res ; 35(7): 4000-4006, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33860587

RESUMEN

The outbreak of Coronavirus disease 2019 (COVID-19) has caused a global health crisis. Nevertheless, no antiviral treatment has yet been proven effective for treating COVID-19 and symptomatic supportive cares have been the most common treatment. Therefore, the present study was designed to evaluate the effects of propolis and Hyoscyamus niger L. extract in patients with COVID-19. This randomized clinical trial was conducted on 50 cases referred to Akhavan and Sepehri Clinics, Kashan university of medical sciences, Iran. Subjects were divided into two groups (intervention and placebo). This syrup (containing 1.6 mg of methanolic extract along with 450 mg of propolis per 10 mL) was administered three times a day to each patient for 6 days. The clinical symptoms of COVID-19 such as: dry cough, shortness of breath, sore throat, chest pain, fever, dizziness, headache, abdominal pain, and diarrhea were reduced with propolis plus Hyoscyamus niger L. extract than the placebo group. However, the administration of syrup was not effective in the control of nausea and vomiting. In conclusion, syrup containing propolis and Hyoscyamus niger L. extract had beneficial effects in ameliorating the signs and symptoms of COVID-19 disease, in comparison with placebo groups.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hyoscyamus , Extractos Vegetales/uso terapéutico , Própolis , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Adulto , Femenino , Humanos , Hyoscyamus/química , Irán , Masculino , Metanol , Persona de Mediana Edad , Própolis/uso terapéutico , Síndrome de Dificultad Respiratoria/virología , Resultado del Tratamiento
5.
Plant Mol Biol ; 100(4-5): 433-450, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30968307

RESUMEN

KEY MESSAGE: Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions. The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.


Asunto(s)
Genoma Mitocondrial , Hibridación Genética , Mitocondrias/genética , ADN Mitocondrial/química , Genoma de Planta , Recombinación Homóloga , Hyoscyamus/genética , Nicotiana/genética
6.
Pak J Pharm Sci ; 32(2): 661-667, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31081780

RESUMEN

The work presented in this paper illustrates the isolation and structure elucidation of secondary metabolites of Hyoscyamus albus. Two new natural source and three known compounds were isolated from the Hyoscyamus albus. Among the isolated compounds, grivilloside H (1) and betulaplatoside (2) were isolated for the first time while scopolamine (3), ß-sitosterol (4) and stigmasterol (5) have been reported previously from the same plant. The structures of all the isolated compounds were established by using modern spectroscopic technique (UV, IR, NMR, and EI-MS) and by comparing with those available in literature.


Asunto(s)
Hyoscyamus/metabolismo , Fitoquímicos/química , Plantas Medicinales/metabolismo , Glucósidos/química , Glucósidos/aislamiento & purificación , Glucósidos/metabolismo , Hyoscyamus/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/metabolismo , Plantas Medicinales/química , Escopolamina/química , Escopolamina/aislamiento & purificación , Escopolamina/metabolismo , Metabolismo Secundario , Sitoesteroles/química , Sitoesteroles/aislamiento & purificación , Sitoesteroles/metabolismo , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Estigmasterol/química , Estigmasterol/aislamiento & purificación , Estigmasterol/metabolismo
7.
Acta Biol Hung ; 69(4): 437-448, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30587015

RESUMEN

Hyoscyamus reticulatus L. is a herbaceous biennial belonging to the solanaceae family. Hyoscyamine and scopolamine as main tropane alkaloids accumulated in henbane are widely used in medicine to treat diseases such as parkinson's or to calm schizoid patients. Hairy roots media manipulation which uses elicitors to activate defense mechanisms is one of the main strategies for inducing secondary metabolism as well as increasing the production of valuable metabolites. Cotyledon-derived hairy root cultures were transformed by Agrobacterium rhizogenes. Sodium nitroprusside (SNP), a nitric oxide donor), was used in various concentrations (0, 50, 100, 200 and 300 µM) and exposure times (24 and 48 h). Treatment with SNP led to a significant reduction in fresh and dry weight of hairy roots, compared to control cultures. ANOVA results showed that elicitation of hairy root cultures with SNP at different concentrations and exposure times significantly affected the activity of as antioxidant enzymes such as catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). The highest hyoscyamine and scopolamine production (about 1.2-fold and 1.5-fold increases over the control) was observed at 50 and 100 µM SNP at 48 and 24 hours of exposure time, respectively. This is the first report of SNP elicitation effects on the production of tropane alkaloids in hairy root cultures.


Asunto(s)
Antioxidantes/metabolismo , Enzimas/biosíntesis , Hyoscyamus/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Proteínas de Plantas/biosíntesis , Raíces de Plantas/efectos de los fármacos , Tropanos/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Inducción Enzimática , Hyoscyamus/enzimología , Hyoscyamus/crecimiento & desarrollo , Hyoscyamus/microbiología , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Factores de Tiempo , Técnicas de Cultivo de Tejidos , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
9.
Plant Cell Rep ; 36(10): 1615-1626, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28707113

RESUMEN

KEY MESSAGE: Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.


Asunto(s)
Alcaloides/metabolismo , Hyoscyamus/genética , Ingeniería Metabólica/métodos , Raíces de Plantas/genética , Ploidias , Tropanos/metabolismo , Vías Biosintéticas/genética , Diploidia , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Hyoscyamus/clasificación , Hyoscyamus/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Escopolamina/metabolismo , Especificidad de la Especie , Tetraploidía , Técnicas de Cultivo de Tejidos
10.
Yao Xue Xue Bao ; 52(1): 172-9, 2017 Jan.
Artículo en Zh | MEDLINE | ID: mdl-29911833

RESUMEN

Tropane alkaloids are anticholinergic drugs widely used clinically. Biosynthesis of tropane alkaloids in planta involves a step of transamination of phenylalanine. Based on the sequenced transcriptomes of lateral roots and leaves of Hyoscyamus niger, we found three annotated aromatic amino acid aminotransferases, which were respectively named HnArAT1, HnArAT2 and HnArAT3. Sequence analysis showed that HnArAT3 had highest similarity with the reported Atropa belladonna Ab Ar AT4, which was involved in tropane alkaloid(TA) to provide the precursor of the phenyllactic acid moiety. Tissue expression pattern analysis indicated that HnArAT3 was specifically expressed in lateral roots, where is the organ synthesizing tropane alkaloids. Then, method of virus induced gene silencing (VIGS) was used to characterize the function of HnArAT3 in H. niger. Gene expression analysis given by real-time quantitative PCR showed that all the transgenic lines had lower expression levels of HnArAT3 than the non-transgenic control, and HPLC analysis of alkaloids demonstrated significant decrease in the contents of hyoscyamine, anisodamine and scopolamine in planta. These results suggested that HnArAT3 was involved in the phenyllactic acid branch of TA biosynthetic pathway. Molecular cloning and functional identification of HnArAT3 laid the foundation for further understanding of TA biosynthesis and metabolic regulation, and also provided a new candidate gene for engineering biosynthetic pathway of tropane alkaloids.


Asunto(s)
Alcaloides/biosíntesis , Hyoscyamus/genética , Proteínas de Plantas/genética , Transaminasas/genética , Tropanos/metabolismo , Atropa belladonna , Vías Biosintéticas , Antagonistas Colinérgicos , Clonación Molecular , Hiosciamina , Hyoscyamus/enzimología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Escopolamina , Alcaloides Solanáceos
11.
New Phytol ; 206(1): 381-396, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25441621

RESUMEN

The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.


Asunto(s)
Genoma Mitocondrial/genética , Genoma de Planta/genética , Recombinación Homóloga , Magnoliopsida/genética , Solanaceae/genética , Secuencia de Bases , Quimera , ADN Mitocondrial/química , ADN Mitocondrial/genética , Hyoscyamus/genética , Mitocondrias/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Nicotiana/genética
12.
Metab Eng ; 24: 18-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24747046

RESUMEN

The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources.


Asunto(s)
Proteínas de Arabidopsis , Ingeniería Metabólica , Pichia , Sesquiterpenos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Cupressus/enzimología , Cupressus/genética , Hyoscyamus/enzimología , Hyoscyamus/genética , Pichia/enzimología , Pichia/genética , Sesquiterpenos Policíclicos
13.
J Sep Sci ; 37(19): 2664-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044356

RESUMEN

In order to investigate the pharmacokinetics of tropane alkaloids in Hyoscyamus niger L., a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of atropine, scopolamine, and anisodamine in rat plasma is developed and fully validated, using homatropine as an internal standard. The separation of the four compounds was carried out on a BDS Hypersil C18 column using a mobile phase consisting of acetonitrile and water (containing 10 mmol ammonium acetate). Calibration curves were linear from 0.2 to 40 ng/mL for atropine, scopolamine, and from 0.08 to 20 ng/mL for anisodamine. The precision of three analytes was <5.89% and the accuracy was between -1.04 to 2.94%. This method is successfully applied to rat pharmacokinetics analysis of the three tropane alkaloids after oral administration of H. niger extract. The maximum concentration of these three tropane alkaloids was reached within 15 min, and the maximum concentrations were 31.36 ± 7.35 ng/mL for atropine, 49.94 ± 2.67 ng/mL for scopolamine, and 2.83 ± 1.49 ng/mL for anisodamine. The pharmacokinetic parameters revealed areas under the curve of 22.76 ± 5.80, 16.80 ± 3.08, and 4.31 ± 1.21 ng/h mL and mean residence times of 2.08 ± 0.55, 1.19 ± 0.45, and 3.28 ± 0.78 h for atropine, scopolamine, and anisodamine, respectively.


Asunto(s)
Atropina/sangre , Atropina/farmacocinética , Hyoscyamus/química , Escopolamina/sangre , Escopolamina/farmacocinética , Alcaloides Solanáceos/sangre , Alcaloides Solanáceos/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Masculino , Extractos Vegetales/sangre , Extractos Vegetales/farmacocinética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
14.
Biotechnol Lett ; 36(4): 843-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24322778

RESUMEN

Hairy root cultures of Hyoscyamus niger were cultivated in shake-flasks, a bubble-column bioreactor and a hybrid bubble-column/spray bioreactor and evaluated for alkaloid production. The latter gave the highest anisodamine content (0.67 mg/g dry wt) whereas scopolamine, hyoscyamine and cuscohygrine concentrations were highest in the bubble-column reactor (5.3, 1.6 and 26.5 mg/g dry wt, respectively). Both bioreactors gave similar productivities of scopolamine (1 and 0.98 mg/l day) and cuscohygrine (5 and 5.4 mg/l day), but anisodamine productivity was 3.5-fold higher in the hybrid bioreactor (HB) (0.02 and 0.07 mg/l day, respectively). Elicitation with methyl jasmonate increased scopolamine productivity by 146 % in roots grown in the HB whereas their permeabilization with DMSO caused 4-, 5-, 25- and 28-fold increase in scopolamine, hyoscyamine, anisodamine and cuscohygrine concentrations in the growth medium. In situ extraction with Amberlite XAD-2 doubled scopolamine productivity in the hybrid reactor after 50 days.


Asunto(s)
Alcaloides/metabolismo , Reactores Biológicos , Hyoscyamus/metabolismo , Raíces de Plantas/metabolismo , Tropanos/metabolismo , Alcaloides/aislamiento & purificación , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Tropanos/aislamiento & purificación
15.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814140

RESUMEN

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Asunto(s)
Hyoscyamus , Hyoscyamus/genética , Hyoscyamus/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Rotación , Raíces de Plantas/metabolismo , Tropanos/metabolismo , Tropanos/farmacología , Expresión Génica
16.
Bratisl Lek Listy ; 114(6): 333-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23731045

RESUMEN

INTRODUCTION: In the environment, there are hundreds of poisonous and injurious plants with a wide variety of toxicity. Among all plants with anticholinergic effect, Hyoscyamus reticulatus is a species whose clinicopathological effects have been poorly described in literature. The paper is especially aimed at drawing attention to the possibly fatal syndrome of prolonged QT, as well as to clinical and laboratory changes in six members of a single family poisoned with this plant. CASES: Six female patients aged from 19 to 49 presented to our emergency room with a suspicion of being poisoned after having ingested a plant known as 'the mad axe plant' (Hyoscyamus reticulatus). At least one of anticholinergic symptoms including flushing, mydriasis, dry mouth and tachycardia was present in all of the patients. In addition, different levels of agitation were observed in four of the patients. A euphoric emotional state was present in two patients. The corrected QT distances were found to be prolonged in three of the patients. DISCUSSION AND CONCLUSION: Based on economical, social and cultural reasons, it is a very common habit in our country, especially in our region in spring and summer months, to consume some plants growing spontaneously in rural areas as food. Intoxication with Hyoscyamus reticulatus is a plant poisoning that is poorly described in literature. Its classical symptoms are predominantly anticholinergic. Although it is commonly self-limited and can be corrected with close observation and supportive treatments, it should be kept in mind that the prolongation of QT interval can accompany the symptoms of poisoning with this plant (Tab. 1, Fig. 3, Ref. 19).


Asunto(s)
Hyoscyamus/envenenamiento , Síndrome de QT Prolongado/inducido químicamente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven
17.
Sci Rep ; 13(1): 10397, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369701

RESUMEN

The utilization of nanotechnology and biotechnology for enhancing the synthesis of plant bioactive chemicals is becoming increasingly common. The hairy root culture technique can be used to increase secondary metabolites such as tropane alkaloids. Agrobacterium was used to induce hairy roots from various explants of Hyoscyamus muticus. The effect of nano-silver particles (AgNPs) at concentrations of 0, 25, 50, 100, and 200 mg/L on tropane alkaloids synthesis, particularly hyoscyamine and scopolamine, was studied in transgenic hairy root cultures. Different types of explants obtained from 10-day-old seedlings of H. muticus were inoculated with two strains of Agrobacterium rhizogenes (15,834 and A4). The antimicrobial activity of an ethanolic extract of AgNPs-induced hairy root cultures of H. muticus was tested. The frequency of hairy roots was higher in hypocotyl, root, leaf, and stem explants treated with A. rhizogenes strain A4 compared to those treated with strain 15,834. In transgenic hairy root cultures, AgNPs application at a concentration of 100 mg/L resulted in the highest total tropane alkaloid production, which exhibited broad-spectrum antimicrobial activity. The study demonstrated the potential of nano-silver as an elicitor for promoting the production of target alkaloids in Hyoscyamus muticus hairy root cultures, which exhibit high biological activity.


Asunto(s)
Alcaloides , Antiinfecciosos , Hyoscyamus , Nanopartículas del Metal , Plata/farmacología , Plata/metabolismo , Tropanos/farmacología , Tropanos/metabolismo , Alcaloides/farmacología , Alcaloides/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Raíces de Plantas/metabolismo
18.
Z Naturforsch C J Biosci ; 67(9-10): 461-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23198403

RESUMEN

Thirty-four alkaloids were identified in the organs of Hyoscyamus albus L. by gas-liquid chromatography-mass spectrometry (GLC-MS). Eight new compounds for the roots, eleven for the stems, twelve for the leaves, nineteen for the flowers, and seven for the seeds were detected. The alkaloids 5-(2-oxopropyl)-hygrine (8) and phygrine (20) are new for this species and 3-(hydroxyacetoxy)tropane (9), 6,7-dehydro-3-phenylacetoxytropane (15), 3-(2'-phenylpropionyloxy)tropane (17), 6,7-dehydro-3-apotropoyloxytropane (18), 3-(3'-methoxytropoyloxy)tropane (23), and aponorscopolamine (25) are described for the first time for the genus Hyoscyamus. Hyoscyamine was the main alkaloid in the plant organs.


Asunto(s)
Alcaloides/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hyoscyamus/química , Tropanos/análisis
19.
J AOAC Int ; 105(6): 1730-1740, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35951765

RESUMEN

BACKGROUND: Scopolamine is among the most essential tropane alkaloids used to remedy various nervous system disorders such as urinary incontinence, motion sickness, and spasmodic movements because of its anticholinergic and antispasmodic effects. OBJECTIVE: In this study, an optical nanosensor was fabricated using nano-Dragendorff's reagent to detect and determine scopolamine in different plant parts at different stages of growth. METHOD: For fabrication of the sensing phase, GO-g-PCA/DR was synthesized by encapsulation of Dragendorff's reagent (DR) on the graphene oxide grafted with poly citric acid (GO-g-PCA) with ultrasonication for 15 min and stirred for 80 min at room temperature, and then it was immobilized on a triacetyl cellulose membrane. The kinetic absorption profiles were recorded at 360 nm, which is concerned with the reaction between immobilized GO-g-PCA/DR and different concentrations of scopolamine. RESULTS: The nanosensor showed a rapid, strong, and stable response to the scopolamine solution with changing the absorption spectrum at 360 nm. The reaction was completed in a period of 300 s. The SEM, AFM, and FT-IR analysis of nanocomposites and nanosensors show the successful synthesis of GO-g-PCA/DR and the reaction between nanosensor and scopolamine. All experiments were performed at the wavelength of 360 nm, room temperature, pH 7 (the scopolamine solution pH), and 300 s. The nanosensor had a linear range of 0.65 to 19.63 µg/mL and 0.19 ± 0.025 µg/mL as the limit of detection for scopolamine determination. In order to reuse the designed nanosensor, it was recovered with ethanol, and the color ultimately returned to its original state. CONCLUSIONS: This in situ nanosensor can determine the scopolamine in real samples with easy reversibility, extended lifetime, and reproducibility of the sensing phase response. HIGHLIGHTS: A sensitive, precise, and fast response optical nanosensor is designed for in situ determination of scopolamine in real samples.


Asunto(s)
Hyoscyamus , Escopolamina/análisis , Reproducibilidad de los Resultados , Parasimpatolíticos , Espectroscopía Infrarroja por Transformada de Fourier , Tropanos , Antagonistas Colinérgicos , Extractos Vegetales , Etanol , Ácido Cítrico , Celulosa
20.
Neurochem Res ; 36(1): 177-86, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20972705

RESUMEN

Hyoscyamus species is one of the four plants used in Ayurveda for the treatment of Parkinson's disease (PD). Since Hyoscyamus niger was found to contain negligible levels of L-DOPA, we evaluated neuroprotective potential, if any, of characterized petroleum ether and aqueous methanol extracts of its seeds in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD in mice. Air dried authenticated H. niger seeds were sequentially extracted using petroleum ether and aqueous methanol and were characterized employing HPLC-electrochemistry and LCMS. Parkinsonian mice were treated daily twice with the extracts (125-500 mg/kg, p.o.) for two days and motor functions and striatal dopamine levels were assayed. Administration of the aqueous methanol extract (containing 0.03% w/w of L-DOPA), but not petroleum ether extract, significantly attenuated motor disabilities (akinesia, catalepsy and reduced swim score) and striatal dopamine loss in MPTP treated mice. Since the extract caused significant inhibition of monoamine oxidase activity and attenuated 1-methyl-4-phenyl pyridinium (MPP+)-induced hydroxyl radical (·OH) generation in isolated mitochondria, it is possible that the methanolic extract of Hyoscyamus niger seeds protects against parkinsonism in mice by means of its ability to inhibit increased ·OH generated in the mitochondria.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Depuradores de Radicales Libres/metabolismo , Radical Hidroxilo/metabolismo , Hyoscyamus/química , Monoaminooxidasa/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Intoxicación por MPTP , Masculino , Medicina Ayurvédica , Metanol/química , Ratones , Ratones Endogámicos BALB C , Inhibidores de la Monoaminooxidasa/farmacología , Extractos Vegetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA