RESUMEN
Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.
Asunto(s)
Proteína BRCA2/genética , Aberraciones Cromosómicas/efectos de los fármacos , Formaldehído/toxicidad , Inestabilidad Genómica/efectos de los fármacos , Toxinas Biológicas/toxicidad , Daño del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Haploinsuficiencia , Células HeLa , Humanos , Proteína Homóloga de MRE11 , Proteoma , Ribonucleasa H/metabolismoRESUMEN
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Asunto(s)
Momento de Replicación del ADN , Embrión de Mamíferos , Desarrollo Embrionario , Inestabilidad Genómica , Animales , Femenino , Masculino , Ratones , Blastocisto/citología , Blastocisto/metabolismo , Aberraciones Cromosómicas/efectos de los fármacos , Segregación Cromosómica , Daño del ADN/efectos de los fármacos , Reparación del ADN , Momento de Replicación del ADN/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Fase S/efectos de los fármacos , Fase S/genética , Análisis de la Célula Individual , Puntos de Rotura del Cromosoma , División Celular , Nucleósidos/metabolismo , Nucleósidos/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/metabolismoRESUMEN
53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.
Asunto(s)
Recombinación Homóloga/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Proteína BRCA1/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Mutación/efectos de los fármacos , Mutación/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.
Asunto(s)
Daño del ADN , Proteína Quinasa Activada por ADN , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Femenino , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.
Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Fúngico , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Sumoilación , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/efectos de los fármacos , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Resistencia a Medicamentos , Etopósido/farmacología , Genoma Fúngico/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Inhibidores de Topoisomerasa II/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.
Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Metabolismo Energético , Genoma Fúngico , Inestabilidad Genómica , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Hongos/genética , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolómica , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.
Asunto(s)
Cadmio , Inestabilidad Genómica , Infertilidad Masculina , Espermatocitos , Animales , Humanos , Masculino , Ratones , Cadmio/toxicidad , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Inestabilidad Genómica/efectos de los fármacos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Iones/metabolismo , Fosforilación , Reparación del ADN por Recombinación , Espermatocitos/efectos de los fármacosRESUMEN
Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.
Asunto(s)
Proteína BRCA1/deficiencia , Dineínas Citoplasmáticas/metabolismo , ADN/metabolismo , Genes BRCA1 , Proteína Homóloga de MRE11/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA1/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Edición Génica , Inestabilidad Genómica/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Humanos , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Platino (Metal)/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica , Reparación del ADN por Recombinación/efectos de los fármacos , Factores de Transcripción/metabolismoRESUMEN
Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Evolución Molecular , Variación Genética/genética , Inestabilidad Genómica/genética , Transcripción Genética/genética , Neoplasias de la Mama/patología , Proliferación Celular , Forma de la Célula , Células Clonales/citología , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Variación Genética/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Humanos , Células MCF-7 , Reproducibilidad de los ResultadosRESUMEN
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle1. Replication stress induces fork stalling and fuels genome instability2. The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer2. Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.
Asunto(s)
Estructuras Cromosómicas , Daño del ADN , Replicación del ADN/fisiología , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Línea Celular Tumoral , Estructuras Cromosómicas/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Humanos , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.
Asunto(s)
Acetaldehído/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Inestabilidad Genómica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Mutación , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Etanol/administración & dosificación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Eliminación de Gen , Genes p53/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Autoantígeno Ku/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reparación del ADN por Recombinación/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del GenomaRESUMEN
The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.
Asunto(s)
Antígenos de Neoplasias/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas Nucleares/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Factores de Transcripción/genética , Ácido Anhídrido Hidrolasas , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Pollos , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Etopósido/farmacología , Regulación de la Expresión Génica , Inestabilidad Genómica/efectos de los fármacos , Humanos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Proteína Homóloga de MRE11 , Mutación , Proteínas Nucleares/metabolismo , Hidrolasas Diéster Fosfóricas , Proteínas de Unión a Poli-ADP-Ribosa , Transducción de Señal , Inhibidores de Topoisomerasa II/farmacología , Factores de Transcripción/metabolismoRESUMEN
Indoor air pollution is becoming a rising public health problem and is largely resulting from the burning of solid fuels and heating in households. Burning these fuels produces harmful compounds, such as particulate matter regarded as a major health risk, particularly affecting the onset and exacerbation of respiratory diseases. As exposure to polluted indoor air can cause DNA damage including DNA sd breaks as well as chromosomal damage, in this paper, we aim to provide an overview of the impact of indoor air pollution on DNA damage and genome stability by reviewing the scientific papers that have used the comet, micronucleus, and γ-H2AX assays. These methods are valuable tools in human biomonitoring and for studying the mechanisms of action of various pollutants, and are readily used for the assessment of primary DNA damage and genome instability induced by air pollutants by measuring different aspects of DNA and chromosomal damage. Based on our search, in selected studies (in vitro, animal models, and human biomonitoring), we found generally higher levels of DNA strand breaks and chromosomal damage due to indoor air pollutants compared to matched control or unexposed groups. In summary, our systematic review reveals the importance of the comet, micronucleus, and γ-H2AX assays as sensitive tools for the evaluation of DNA and genome damaging potential of different indoor air pollutants. Additionally, research in this particular direction is warranted since little is still known about the level of indoor air pollution in households or public buildings and its impact on genetic material. Future studies should focus on research investigating the possible impact of indoor air pollutants in complex mixtures on the genome and relate pollutants to possible health outcomes.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Daño del ADN , Pruebas de Micronúcleos , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Humanos , Animales , Contaminantes Atmosféricos/toxicidad , Inestabilidad Cromosómica/efectos de los fármacos , Ensayo Cometa , Material Particulado/toxicidad , Material Particulado/análisis , Histonas/metabolismo , Monitoreo del Ambiente/métodos , Inestabilidad Genómica/efectos de los fármacos , Monitoreo Biológico/métodosRESUMEN
The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.
Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/metabolismo , Genoma Viral/genética , Inestabilidad Genómica , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Exorribonucleasas/antagonistas & inhibidores , Genoma Viral/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Inhibidores de Integrasa VIH/farmacología , Isoindoles/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Compuestos de Organoselenio/farmacología , ARN Viral/biosíntesis , ARN Viral/genética , Raltegravir Potásico/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Replicación Viral/genéticaRESUMEN
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Asunto(s)
Envejecimiento , Contaminantes Atmosféricos , Senescencia Celular , Material Particulado , Material Particulado/toxicidad , Humanos , Senescencia Celular/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Inestabilidad Genómica/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Contaminación del Aire/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Mitocondrias/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamenteRESUMEN
By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.
Asunto(s)
Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Variación Genética/efectos de los fármacos , Adaptación Biológica , Bacterias/genética , Inestabilidad Genómica/efectos de los fármacos , Mutación , Especies Reactivas de Oxígeno/metabolismo , Recombinación Genética , Selección Genética/efectos de los fármacos , Estrés FisiológicoRESUMEN
Activation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase δ (PI3Kδ) pathway regulates AID by suppressing its expression in B cells. Drugs for leukaemia or lymphoma therapy such as idelalisib, duvelisib and ibrutinib block PI3Kδ activity directly or indirectly, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both of these effects were completely abrogated in AID-deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumours in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IGH and AID off-target sites in human chronic lymphocytic leukaemia and mantle cell lymphoma cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased somatic hypermutation in AID off-targets. In summary, we show that PI3Kδ or Bruton's tyrosine kinase inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. This effect should be carefully considered, as such inhibitors can be administered to patients for years.
Asunto(s)
Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Inestabilidad Genómica/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Linfocitos B/enzimología , Linfocitos B/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Citidina Desaminasa/metabolismo , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Cadenas Pesadas de Inmunoglobulina/genética , Isoquinolinas/efectos adversos , Isoquinolinas/farmacología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Purinas/efectos adversos , Purinas/farmacología , Pirazoles/efectos adversos , Pirazoles/farmacología , Pirimidinas/efectos adversos , Pirimidinas/farmacología , Quinazolinonas/efectos adversos , Quinazolinonas/farmacología , Recombinación Genética/efectos de los fármacos , Hipermutación Somática de Inmunoglobulina/efectos de los fármacos , Translocación Genética/efectos de los fármacosRESUMEN
The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic. This review briefly examines past cell-cycle-targeted therapeutics and outlines how experience with these agents has provided valuable insight to refine and improve anti-mitotic strategies. An overview of emerging anti-mitotic approaches with promising pre-clinical results is provided, and the concept of exploiting the genomic instability of tumor cells through therapeutic inhibition of mitotic checkpoints is discussed. We believe this strategy has a high likelihood of success given its potential to enhance therapeutic index by targeting tumor-specific vulnerabilities. This reasoning stimulated our development of novel inhibitors targeting the critical regulators of genomic stability and the mitotic checkpoint: AURKA, PLK4, and Mps1/TTK.
Asunto(s)
Antineoplásicos/farmacología , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inestabilidad Genómica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidoresRESUMEN
An underlying hallmark of cancers is their genomic instability, which is associated with a greater propensity to accumulate DNA damage. Historical treatment of cancer by radiotherapy and DNA-damaging chemotherapy is based on this principle, yet it is accompanied by significant collateral damage to normal tissue and unwanted side effects. Targeted therapy based on inhibiting the DNA damage response (DDR) in cancers offers the potential for a greater therapeutic window by tailoring treatment to patients with tumors lacking specific DDR functions. The recent approval of olaparib (Lynparza), the poly (ADP-ribose) polymerase (PARP) inhibitor for treating tumors harboring BRCA1 or BRCA2 mutations, represents the first medicine based on this principle, exploiting an underlying cause of tumor formation that also represents an Achilles' heel. This review highlights the different concepts behind targeting DDR in cancer and how this can provide significant opportunities for DDR-based therapies in the future.
Asunto(s)
Antineoplásicos/farmacología , Reparación del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Daño del ADN , Inestabilidad Genómica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genéticaRESUMEN
Epimutations in fungal pathogens are emerging as novel phenomena that could explain the fast-developing resistance to antifungal drugs and other stresses. These epimutations are generated by RNA interference (RNAi) mechanisms that transiently silence specific genes to overcome stressful stimuli. The early-diverging fungus Mucor circinelloides exercises a fine control over two interacting RNAi pathways to produce epimutants: the canonical RNAi pathway and a new RNAi degradative pathway. The latter is considered a non-canonical RNAi pathway (NCRIP) because it relies on RNA-dependent RNA polymerases (RdRPs) and a novel ribonuclease III-like named R3B2 to degrade target transcripts. Here in this work, we uncovered the role of NCRIP in regulating virulence processes and transposon movements through key components of the pathway, RdRP1 and R3B2. Mutants in these genes are unable to launch a proper virulence response to macrophage phagocytosis, resulting in a decreased virulence potential. The transcriptomic profile of rdrp1Δ and r3b2Δ mutants revealed a pre-exposure adaptation to the stressful phagosomal environment even when the strains are not confronted by macrophages. These results suggest that NCRIP represses key targets during regular growth and releases its control when a stressful environment challenges the fungus. NCRIP interacts with the RNAi canonical core to protect genome stability by controlling the expression of centromeric retrotransposable elements. In the absence of NCRIP, these retrotransposons are robustly repressed by the canonical RNAi machinery; thus, supporting the antagonistic role of NCRIP in containing the epimutational pathway. Both interacting RNAi pathways might be essential to govern host-pathogen interactions through transient adaptations, contributing to the unique traits of the emerging infection mucormycosis.