Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
Más filtros

Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(7): 1454-1458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916725

RESUMEN

Few cases of hantavirus pulmonary syndrome have been reported in northeastern Argentina. However, neighboring areas show a higher incidence, suggesting underreporting. We evaluated the presence of antibodies against orthohantavirus in small rodents throughout Misiones province. Infected Akodon affinis montensis and Oligoryzomys nigripes native rodents were found in protected areas of Misiones.


Asunto(s)
Anticuerpos Antivirales , Orthohantavirus , Animales , Argentina/epidemiología , Orthohantavirus/inmunología , Orthohantavirus/clasificación , Orthohantavirus/aislamiento & purificación , Anticuerpos Antivirales/sangre , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Infecciones por Hantavirus/virología , Roedores/virología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/virología , Humanos , Síndrome Pulmonar por Hantavirus/epidemiología , Reservorios de Enfermedades/virología
2.
PLoS Pathog ; 17(8): e1009843, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379707

RESUMEN

In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients' peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings.


Asunto(s)
Lesión Renal Aguda/patología , Linfocitos B/inmunología , Infecciones por Hantavirus/inmunología , Cadenas Ligeras de Inmunoglobulina/sangre , Activación de Linfocitos/inmunología , Orthohantavirus/inmunología , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Infecciones por Hantavirus/sangre , Infecciones por Hantavirus/virología , Humanos , Cadenas Ligeras de Inmunoglobulina/inmunología
3.
PLoS Pathog ; 16(4): e1008483, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330200

RESUMEN

Pathogenic hantaviruses, genus Orthohantaviridae, are maintained in rodent reservoirs with zoonotic transmission to humans occurring through inhalation of rodent excreta. Hantavirus disease in humans is characterized by localized vascular leakage and elevated levels of circulating proinflammatory cytokines. Despite the constant potential for deadly zoonotic transmission to humans, specific virus-host interactions of hantaviruses that lead to innate immune activation, and how these processes impart disease, remain unclear. In this study, we examined the mechanisms of viral recognition and innate immune activation of Hantaan orthohantavirus (HTNV) infection. We identified the RIG-I-like receptor (RLR) pathway as essential for innate immune activation, interferon (IFN) production, and interferon stimulated gene (ISG) expression in response to HTNV infection in human endothelial cells, and in murine cells representative of a non-reservoir host. Our results demonstrate that innate immune activation and signaling through the RLR pathway depends on viral replication wherein the host response can significantly restrict replication in target cells in a manner dependent on the type 1 interferon receptor (IFNAR). Importantly, following HTNV infection of a non-reservoir host murine model, IFNAR-deficient mice had higher viral loads, increased persistence, and greater viral dissemination to lung, spleen, and kidney compared to wild-type animals. Surprisingly, this response was MAVS independent in vivo. Innate immune profiling in these tissues demonstrates that HTNV infection triggers expression of IFN-regulated cytokines early during infection. We conclude that the RLR pathway is essential for recognition of HTNV infection to direct innate immune activation and control of viral replication in vitro, and that additional virus sensing and innate immune response pathways of IFN and cytokine regulation contribute to control of HTNV in vivo. These results reveal a critical role for innate immune regulation in driving divergent outcomes of HTNV infection, and serve to inform studies to identify therapeutic targets to alleviate human hantavirus disease.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Infecciones por Hantavirus/inmunología , Interferón Tipo I/inmunología , Orthohantavirus/fisiología , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Citocinas/inmunología , Citocinas/metabolismo , Proteína 58 DEAD Box/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/metabolismo , Orthohantavirus/inmunología , Orthohantavirus/metabolismo , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/metabolismo , Infecciones por Hantavirus/virología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Ratones , Receptor de Interferón alfa y beta/metabolismo , Receptores Inmunológicos , Transducción de Señal/inmunología , Células Vero
4.
PLoS Biol ; 17(2): e3000142, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30785873

RESUMEN

The diversity of viruses probably exceeds biodiversity of eukaryotes, but little is known about the origin and emergence of novel virus species. Experimentation and disease outbreak investigations have allowed the characterization of rapid molecular virus adaptation. However, the processes leading to the establishment of functionally distinct virus taxa in nature remain obscure. Here, we demonstrate that incipient speciation in a natural host species has generated distinct ecological niches leading to adaptive isolation in an RNA virus. We found a very strong association between the distributions of two major phylogenetic clades in Tula orthohantavirus (TULV) and the rodent host lineages in a natural hybrid zone of the European common vole (Microtus arvalis). The spatial transition between the virus clades in replicated geographic clines is at least eight times narrower than between the hybridizing host lineages. This suggests a strong barrier for effective virus transmission despite frequent dispersal and gene flow among local host populations, and translates to a complete turnover of the adaptive background of TULV within a few hundred meters in the open, unobstructed landscape. Genetic differences between TULV clades are homogenously distributed in the genomes and mostly synonymous (93.1%), except for a cluster of nonsynonymous changes in the 5' region of the viral envelope glycoprotein gene, potentially involved in host-driven isolation. Evolutionary relationships between TULV clades indicate an emergence of these viruses through rapid differential adaptation to the previously diverged host lineages that resulted in levels of ecological isolation exceeding the progress of speciation in their vertebrate hosts.


Asunto(s)
Arvicolinae/virología , Especiación Genética , Genoma , Infecciones por Hantavirus/veterinaria , Interacciones Huésped-Patógeno/genética , Orthohantavirus/genética , Animales , Arvicolinae/clasificación , Arvicolinae/genética , Europa (Continente)/epidemiología , Flujo Génico , Orthohantavirus/clasificación , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/genética , Infecciones por Hantavirus/virología , Hibridación Genética , Filogenia , Aislamiento Reproductivo , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología
5.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31723021

RESUMEN

Virus infection frequently triggers host cell stress signaling resulting in translational arrest; as a consequence, many viruses employ means to modulate the host stress response. Hantaviruses are negative-sense, single-stranded RNA viruses known to inhibit host innate immune responses and apoptosis, but their impact on host cell stress signaling remains largely unknown. In this study, we investigated activation of host cell stress responses during hantavirus infection. We show that hantavirus infection causes transient formation of stress granules (SGs) but does so in only a limited proportion of infected cells. Our data indicate some cell type-specific and hantavirus species-specific variability in SG prevalence and show SG formation to be dependent on the activation of protein kinase R (PKR). Hantavirus infection inhibited PKR-dependent SG formation, which could account for the transient nature and low prevalence of SG formation observed during hantavirus infection. In addition, we report only limited colocalization of hantaviral proteins or RNA with SGs and show evidence indicating hantavirus-mediated inhibition of PKR-like endoplasmic reticulum (ER) kinase (PERK).IMPORTANCE Our work presents the first report on stress granule formation during hantavirus infection. We show that hantavirus infection actively inhibits stress granule formation, thereby escaping the detrimental effects on global translation imposed by host stress signaling. Our results highlight a previously uncharacterized aspect of hantavirus-host interactions with possible implications for how hantaviruses are able to cause persistent infection in natural hosts and for pathogenesis.


Asunto(s)
Infecciones por Hantavirus/virología , Orthohantavirus/fisiología , Orthohepadnavirus/fisiología , Virus Puumala/fisiología , eIF-2 Quinasa/metabolismo , Línea Celular , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Transducción de Señal , Proteínas Virales/metabolismo
6.
Arch Virol ; 166(1): 275-280, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33201342

RESUMEN

The infectivity of shrew-borne hantaviruses to humans is still unclear because of the lack of a serodiagnosis method for these viruses. In this study, we prepared recombinant nucleocapsid (rN) proteins of Seewis orthohantavirus, Altai orthohantavirus (ALTV), Thottapalayam thottimvirus (TPMV), and Asama orthohantavirus. Using monospecific rabbit sera, no antigenic cross-reactivity was observed. In a serosurvey of 104 samples from renal patients and 271 samples from heathy controls from Sri Lanka, one patient serum and two healthy control sera reacted with rN proteins of ALTV and TPMV, respectively. The novel assays should be applied to investigate potential infectivity of shrew-borne hantaviruses to humans.


Asunto(s)
Infecciones por Hantavirus/inmunología , Infecciones por Hantavirus/virología , Orthohantavirus/inmunología , Musarañas/virología , Animales , Estudios de Casos y Controles , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de la Nucleocápside/inmunología , Filogenia , Virus ARN/inmunología , Conejos , Proteínas Recombinantes/inmunología , Pruebas Serológicas/métodos , Sri Lanka , Células Vero
7.
Emerg Infect Dis ; 26(3): 560-567, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32091360

RESUMEN

In 2012, a total of 9 cases of hantavirus infection occurred in overnight visitors to Yosemite Valley, Yosemite National Park, California, USA. In the 6 years after the initial outbreak investigation, the California Department of Public Health conducted 11 rodent trapping events in developed areas of Yosemite Valley and 6 in Tuolumne Meadows to monitor the relative abundance of deer mice (Peromyscus maniculatus) and seroprevalence of Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome. Deer mouse trap success in Yosemite Valley remained lower than that observed during the 2012 outbreak investigation. Seroprevalence of Sin Nombre orthohantavirus in deer mice during 2013-2018 was also lower than during the outbreak, but the difference was not statistically significant (p = 0.02). The decreased relative abundance of Peromyscus spp. mice in developed areas of Yosemite Valley after the outbreak is probably associated with increased rodent exclusion efforts and decreased peridomestic habitat.


Asunto(s)
Infecciones por Hantavirus/epidemiología , Orthohantavirus/aislamiento & purificación , Animales , California/epidemiología , Reservorios de Enfermedades , Infecciones por Hantavirus/virología , Humanos , Ratones/virología , Parques Recreativos , Virus Sin Nombre/aislamiento & purificación
8.
J Gen Virol ; 101(10): 1047-1055, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32667279

RESUMEN

Type I interferon receptor knockout mice (strain A129) were assessed as a disease model of hantavirus infection. A range of infection routes (intramuscular, intraperitoneal and intranasal) were assessed using minimally passaged Seoul virus (strain Humber). Dissemination of virus to the spleen, kidney and lung was observed at 5 days after intramuscular and intraperitoneal challenge, which was resolved by day 14. In contrast, intranasal challenge of A129 mice demonstrated virus tropism to the lung, which was maintained to day 14 post-challenge. These data support the use of the A129 mouse model for future infection studies and the in vivo evaluation of interventions.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Hantavirus , Orthohantavirus/fisiología , Animales , Orthohantavirus/aislamiento & purificación , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/patología , Infecciones por Hantavirus/virología , Fiebre Hemorrágica con Síndrome Renal/patología , Fiebre Hemorrágica con Síndrome Renal/virología , Riñón/virología , Hígado/patología , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Noqueados , ARN Viral/análisis , ARN Viral/sangre , Receptor de Interferón alfa y beta/genética , Bazo/patología , Bazo/virología , Tropismo Viral
9.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30867297

RESUMEN

Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS) and is the only hantavirus shown to spread person to person and cause a highly lethal HPS-like disease in Syrian hamsters. The unique ability of ANDV N protein to inhibit beta interferon (IFNß) induction may contribute to its virulence and spread. Here we analyzed IFNß regulation by ANDV N protein substituted with divergent residues from the nearly identical Maporal virus (MAPV) N protein. We found that MAPV N fails to inhibit IFNß signaling and that replacing ANDV residues 252 to 296 with a hypervariable domain (HVD) from MAPV N prevents IFNß regulation. In addition, changing ANDV residue S386 to the histidine present in MAPV N or the alanine present in other hantaviruses prevented ANDV N from regulating IFNß induction. In contrast, replacing serine with phosphoserine-mimetic aspartic acid (S386D) in ANDV N robustly inhibited interferon regulatory factor 3 (IRF3) phosphorylation and IFNß induction. Additionally, the MAPV N protein gained the ability to inhibit IRF3 phosphorylation and IFNß induction when ANDV HVD and H386D replaced MAPV residues. Mass spectroscopy analysis of N protein from ANDV-infected cells revealed that S386 is phosphorylated, newly classifying ANDV N as a phosphoprotein and phosphorylated S386 as a unique determinant of IFN regulation. In this context, the finding that the ANDV HVD is required for IFN regulation by S386 but dispensable for IFN regulation by D386 suggests a role for HVD in kinase recruitment and S386 phosphorylation. These findings delineate elements within the ANDV N protein that can be targeted to attenuate ANDV and suggest targeting cellular kinases as potential ANDV therapeutics.IMPORTANCE ANDV contains virulence determinants that uniquely permit it to spread person to person and cause highly lethal HPS in immunocompetent hamsters. We discovered that ANDV S386 and an ANDV-specific hypervariable domain permit ANDV N to inhibit IFN induction and that IFN regulation is directed by phosphomimetic S386D substitutions in ANDV N. In addition, MAPV N proteins containing D386 and ANDV HVD gained the ability to inhibit IFN induction. Validating these findings, mass spectroscopy analysis revealed that S386 of ANDV N protein is uniquely phosphorylated during ANDV infection. Collectively, these findings reveal new paradigms for ANDV N protein as a phosphoprotein and IFN pathway regulator and suggest new mechanisms for hantavirus regulation of cellular kinases and signaling pathways. Our findings define novel IFN-regulating virulence determinants of ANDV, identify residues that can be modified to attenuate ANDV for vaccine development, and suggest the potential for kinase inhibitors to therapeutically restrict ANDV replication.


Asunto(s)
Interferón beta/metabolismo , Proteínas de la Nucleocápside/metabolismo , Orthohantavirus/metabolismo , Animales , Chlorocebus aethiops , Células Endoteliales/virología , Células HEK293 , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/virología , Interacciones Huésped-Patógeno , Humanos , Interferón beta/fisiología , Interferones/metabolismo , Interferones/fisiología , Proteínas de la Nucleocápside/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Transducción de Señal , Células Vero , Virulencia , Factores de Virulencia/metabolismo , Replicación Viral
10.
Virol J ; 17(1): 198, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33375950

RESUMEN

BACKGROUND: Rodent borne hantaviruses are emerging viruses infecting humans through inhalation. They cause hemorrhagic fever with renal syndrome and hemorrhagic cardiopulmonary syndrome. Recently, hantaviruses have been detected in other small mammals such as Soricomorpha (shrews, moles) and Chiroptera (bats), suggested as reservoirs for potential pandemic viruses and to play a role in the evolution of hantaviruses. It is important to study the global virome in different reservoirs, therefore our aim was to investigate whether shrews in Sweden carried any hantaviruses. Moreover, to accurately determine the host species, we developed a molecular method for identification of shrews. METHOD: Shrews (n = 198), caught during 1998 in Sweden, were screened with a pan-hantavirus PCR using primers from a conserved region of the large genome segment. In addition to morphological typing of shrews, we developed a molecular based typing method using sequencing of the mitochondrial cytochrome C oxidase I (COI) and cytochrome B (CytB) genes. PCR amplified hantavirus and shrew fragments were sequenced and phylogenetically analysed. RESULTS: Hantavirus RNA was detected in three shrews. Sequencing identified the virus as Seewis hantavirus (SWSV), most closely related to previous isolates from Finland and Russia. All three SWSV sequences were retrieved from common shrews (Sorex araneus) sampled in Västerbotten County, Sweden. The genetic assay for shrew identification was able to identify native Swedish shrew species, and the genetic typing of the Swedish common shrews revealed that they were most similar to common shrews from Russia. CONCLUSION: We detected SWSV RNA in Swedish common shrew samples and developed a genetic assay for shrew identification based on the COI and CytB genes. This was the first report of presence of hantavirus in Swedish shrews.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Infecciones por Hantavirus/veterinaria , Infecciones por Hantavirus/virología , Orthohantavirus/genética , Orthohantavirus/aislamiento & purificación , Musarañas/virología , Animales , Código de Barras del ADN Taxonómico , Variación Genética , Orthohantavirus/clasificación , Filogenia , ARN Viral/análisis , ARN Viral/genética , Análisis de Secuencia de ADN , Suecia
11.
Virus Genes ; 56(1): 95-98, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654295

RESUMEN

To date, only two rodent-borne hantaviruses have been detected in sub-Saharan Africa. Here, we report the detection of a yet unknown hantavirus in a Natal mastomys (Mastomys natalensis) in Méliandou, Guinea, in 2014. The phylogenetic placement of this virus suggests that it might represent a cross-order spillover event from an unknown bat or eulipotyphlan host.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Murinae/virología , Orthohantavirus/aislamiento & purificación , Enfermedades de los Roedores/virología , Animales , Guinea , Orthohantavirus/clasificación , Orthohantavirus/genética , Infecciones por Hantavirus/virología , Filogenia
12.
BMC Infect Dis ; 20(1): 713, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993515

RESUMEN

BACKGROUND: The clinical features, course and outcome of hantavirus infection is highly variable. Symptoms of the central nervous system may occur, but often present atypically and diagnostically challenging. Even though the incidence of hantavirus infection is increasing worldwide, this case is the first to describe diabetes insipidus centralis as a complication of hantavirus infection in the Western world. CASE PRESENTATION: A 49-year old male presenting with severe headache, nausea and photophobia to our neurology department was diagnosed with acute haemorrhage in the pituitary gland by magnetic resonance imaging. In the following days, the patient developed severe oliguric acute kidney failure. Diagnostic workup revealed a hantavirus infection, so that the pituitary haemorrhage resulting in hypopituitarism was seen as a consequence of hantavirus-induced hypophysitis. Under hormone replacement and symptomatic therapy, the patient's condition and kidney function improved considerably, but significant polyuria persisted, which was initially attributed to recovery from kidney injury. However, water deprivation test revealed central diabetes insipidus, indicating involvement of the posterior pituitary gland. The amount of urine production normalized with desmopressin substitution. CONCLUSION: Our case report highlights that neurological complications of hantavirus infection should be considered in patients with atypical clinical presentation.


Asunto(s)
Diabetes Insípida Neurogénica/etiología , Infecciones por Hantavirus/complicaciones , Hipofisitis/etiología , Hipopituitarismo/etiología , Orthohantavirus/genética , Orthohantavirus/inmunología , Poliuria/etiología , Lesión Renal Aguda/tratamiento farmacológico , Anticuerpos Antivirales/análisis , Fármacos Antidiuréticos/uso terapéutico , Desamino Arginina Vasopresina/uso terapéutico , Diabetes Insípida Neurogénica/tratamiento farmacológico , Estudios de Seguimiento , Infecciones por Hantavirus/virología , Terapia de Reemplazo de Hormonas , Humanos , Hipofisitis/diagnóstico por imagen , Hipofisitis/tratamiento farmacológico , Hipopituitarismo/diagnóstico por imagen , Hipopituitarismo/tratamiento farmacológico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa , Poliuria/tratamiento farmacológico , Resultado del Tratamiento
13.
Emerg Infect Dis ; 25(11): 2133-2135, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625853

RESUMEN

During 2008-2018, we collected samples from rodents and patients throughout the Czech Republic and characterized hantavirus isolates. We detected Dobrava-Belgrade and Puumala orthohantaviruses in patients and Dobrava-Belgrade, Tula, and Seewis orthohantaviruses in rodents. Increased knowledge of eco-epidemiology of hantaviruses will improve awareness among physicians and better outcomes of patients.


Asunto(s)
Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/virología , Epidemiología Molecular , Orthohantavirus/genética , Animales , Anticuerpos Antivirales , República Checa/epidemiología , Genes Virales , Orthohantavirus/inmunología , Infecciones por Hantavirus/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Filogenia
14.
Emerg Infect Dis ; 25(1): 140-143, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561320

RESUMEN

The analysis of the nucleoprotein gene of 77 Puumala hantavirus strains detected in human samples in France during 2012-2016 showed that all belonged to the Central European lineage. We observed 2 main clusters, geographically structured; one included strains with the Q64 signature and the other strains with the R64 signature.


Asunto(s)
Arvicolinae/virología , Infecciones por Hantavirus/virología , Orthohantavirus/genética , Virus Puumala/genética , Animales , Análisis por Conglomerados , Francia/epidemiología , Genómica , Genotipo , Geografía , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/epidemiología , Humanos , Filogenia , Virus Puumala/aislamiento & purificación , Zoonosis
15.
Emerg Infect Dis ; 25(6): 1241-1243, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844358
16.
J Gen Virol ; 100(8): 1208-1221, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31268416

RESUMEN

The family Hantaviridae mostly comprises rodent-borne segmented negative-sense RNA viruses, many of which are capable of causing devastating disease in humans. In contrast, hantavirus infection of rodent hosts results in a persistent and inapparent infection through their ability to evade immune detection and inhibit apoptosis. In this study, we used Tula hantavirus (TULV) to investigate the interplay between viral and host apoptotic responses during early, peak and persistent phases of virus infection in cell culture. Examination of early-phase TULV infection revealed that infected cells were refractory to apoptosis, as evidenced by the complete lack of cleaved caspase-3 (casp-3C) staining, whereas in non-infected bystander cells casp-3C was highly abundant. Interestingly, at later time points, casp-3C was abundant in infected cells, but the cells remained viable and able to continue shedding infectious virus, and together these observations were suggestive of a TULV-associated apoptotic block. To investigate this block, we viewed TULV-infected cells using laser scanning confocal and wide-field deconvolution microscopy, which revealed that TULV nucleocapsid protein (NP) colocalized with, and sequestered, casp-3C within cytoplasmic ultrastructures. Consistent with casp-3C colocalization, we showed for the first time that TULV NP was cleaved in cells and that TULV NP and casp-3C could be co-immunoprecipitated, suggesting that this interaction was stable and thus unlikely to be solely confined to NP binding as a substrate to the casp-3C active site. To account for these findings, we propose a novel mechanism by which TULV NP inhibits apoptosis by spatially sequestering casp-3C from its downstream apoptotic targets within the cytosol.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Infecciones por Hantavirus/enzimología , Proteínas de la Nucleocápside/metabolismo , Orthohantavirus/metabolismo , Animales , Caspasa 3/genética , Citosol/enzimología , Citosol/virología , Orthohantavirus/genética , Infecciones por Hantavirus/genética , Infecciones por Hantavirus/fisiopatología , Infecciones por Hantavirus/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Nucleocápside/genética , Unión Proteica
17.
J Med Virol ; 91(10): 1737-1742, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31218696

RESUMEN

BACKGROUND: Hantaviruses are a group of emerging pathogens causing hemorrhagic fever with renal syndrome and Hantavirus cardiopulmonary syndrome in human. This study was conducted to investigate Hantavirus infection among Iranian viral hemorrhagic fever suspected patients. METHODS: From April 2014 to June 2016, 113 cases from 25 different provinces of Iran were analyzed for Hantavirus infection by IgM/IgG ELISA and pan-Hantavirus RT-PCR tests. RESULTS: Although, viral genome was detected in none of the subjects, IgM and IgG antibodies were detected in 19 and 4 cases, respectively. Differentiation of the anti-Hantavirus antibodies according to virus species by EUROLINE Anti-Hantavirus Profile Kit revealed three Puumala virus IgM positive, one Hantaan virus IgM positive, one Hantaan virus IgM borderline, and two Puumala virus IgG borderline cases. CONCLUSIONS: This study demonstrates the circulation of Hantaviruses in Iran and calls for further investigations of these life-threatening viruses in the country.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/virología , Fiebres Hemorrágicas Virales/epidemiología , Fiebres Hemorrágicas Virales/virología , Ensayo de Inmunoadsorción Enzimática , Infecciones por Hantavirus/sangre , Fiebres Hemorrágicas Virales/sangre , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Irán/epidemiología
18.
Mol Phylogenet Evol ; 136: 35-43, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30914396

RESUMEN

Hantaviruses (order Bunyavirales, family Hantaviridae) are important zoonotic pathogens. Because of the great diversity of their reservoir hosts, hantaviruses are excellent models to evaluate the dynamics of virus-host co-evolution. To understand the mechanisms behind the evolutionary history of hantaviruses through virus-reservoir interactions, it is important to know how the radiation and diversity of hantaviruses occurred. In this paper, we evaluate the pattern of hantavirus diversification based on a complete S segment representing major groups of hantaviruses found in the Americas. Phylogenetic analyses revealed a high degree of phylogeographic structure and a surprising pattern of geographical distribution of New World hantaviruses. The available data suggest that hantaviruses related to the Arvicolinae rodent subfamily in North America probably emerged and initially adapted from a shared common ancestor of the Tula virus. The first clade of hantaviruses associated with Neotominae occupied a stem lineage, especially those that emerged in Central America or Mexico. Hantaviruses from Central America and Mexico found in Neotominae rodents spread northward and probably gave rise to the first phylogroup of hantaviruses associated with Sigmodontinae in North America. Two preferential host-switching transmissions in hantaviruses apparently gave rise to two different paraphyletic group in Neotominae and Sigmodontinae. Our study supports a probable epicenter of diversification in Central America and/or Mexico for hantaviruses related to both the Neotominae and Sigmodontinae subfamilies.


Asunto(s)
Orthohantavirus/clasificación , Filogeografía , Roedores/virología , Animales , América Central , Infecciones por Hantavirus/virología , México , Filogenia , Recombinación Genética/genética
19.
Virus Genes ; 55(6): 848-853, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31573059

RESUMEN

Vole-associated hantaviruses occur in the Old and New World. Tula orthohantavirus (TULV) is widely distributed throughout the European continent in its reservoir, the common vole (Microtus arvalis), but the virus was also frequently detected in field voles (Microtus agrestis) and other vole species. TULV and common voles are absent from Great Britain. However, field voles there harbor Tatenale and Kielder hantaviruses. Here we screened 126 field voles and 13 common voles from Brandenburg, Germany, for hantavirus infections. One common vole and four field voles were anti-TULV antibody and/or TULV RNA positive. In one additional, seropositive field vole a novel hantavirus sequence was detected. The partial S and L segment nucleotide sequences were only 61.1% and 75.6% identical to sympatrically occurring TULV sequences, but showed highest similarity of approximately 80% to British Tatenale and Kielder hantaviruses. Subsequent determination of the entire nucleocapsid (N), glycoprotein (GPC), and RNA-dependent RNA polymerase encoding sequences and determination of the pairwise evolutionary distance (PED) value for the concatenated N and GPC amino acid sequences confirmed a novel orthohantavirus species, tentatively named Traemmersee orthohantavirus. The identification of this novel hantavirus in a field vole from eastern Germany underlines the necessity of a large-scale, broad geographical hantavirus screening of voles to understand evolutionary processes of virus-host associations and host switches.


Asunto(s)
Arvicolinae/virología , Infecciones por Hantavirus/genética , Orthohantavirus/genética , Secuencia de Aminoácidos , Animales , Arvicolinae/genética , Alemania , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/virología , Especificidad del Huésped/genética , Humanos , Nucleocápside/genética , Filogenia , Virus ARN/genética , ARN Viral/genética , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología
20.
BMC Infect Dis ; 19(1): 765, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477045

RESUMEN

BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is an emerging zoonotic infectious disease caused by hantaviruses which circulate worldwide. So far, it was still considered as one of serious public health problems in China. The present study aimed to reveal the stabilities and variations of hantavirus infection in Hebei province located in North China through a long-term retrospective observation. METHODS: The epidemiological data of HFRS cases from all 11 cities of Hebei province since 1981 through 2016 were collected and descriptively analyzed. The rodent densities, species compositions and virus-carrying rates of different regions were collected from six separated rodent surveillance points which set up since 2007. The molecular diversity and phylogenetic relationship of hantaviruses circulating among rodents were analyzed based on partial viral glycoprotein gene. RESULTS: HFRS cases have been reported every year in Hebei province, since the first local case was identified in 1981. The epidemic history can be artificially divided into three phases and a total of 55,507 HFRS cases with 374 deaths were reported during 1981-2016. The gender and occupational factors of susceptible population were invarible throughout, however age of that was gradually aging. The annual outbreak peak always present in spring, while the main epidemic region had gradully altered from south to northeast. Surveillance of rodents revealed that residential rodents significantly possessed higher density and virus-carring rate than field rodents. The house rat, Rattus norvegicus, was the dominant rodent species and Seoul virus S3 sub-genotype which is continued but slightly evolving perhaps to be the sole pathogen for local HFRS cases of Hebei province. CONCLUSIONS: This long-term province-wide surveillance and epidemiological analysis has revealed the stabilities and variations of hantavirus infection in North China. In order to improve current prevention and control strategies of HFRS in China, all surveillance should be continuously enhanced and variations should be paid more attentions.


Asunto(s)
Infecciones por Hantavirus/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Animales , China/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Genotipo , Orthohantavirus/clasificación , Orthohantavirus/genética , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/virología , Fiebre Hemorrágica con Síndrome Renal/virología , Humanos , Filogenia , Dinámica Poblacional , Vigilancia de la Población , Ratas , Estudios Retrospectivos , Roedores/virología , Factores de Tiempo , Zoonosis/epidemiología , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA