Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 47(2): 310-322.e7, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813660

RESUMEN

Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.


Asunto(s)
Anticuerpos Neutralizantes , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunidad Humoral , Virus del Tumor Mamario del Ratón/inmunología , Virus Rauscher/inmunología , Infecciones por Retroviridae/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Presentación de Antígeno/genética , Biología Computacional , Femenino , Predisposición Genética a la Enfermedad , Antígenos HLA-D/genética , Células HeLa , Hepatitis B/inmunología , Hepatitis B/transmisión , Hepatitis C/inmunología , Hepatitis C/transmisión , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inmunidad Humoral/genética , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Mutación/genética , Polimorfismo Genético , Infecciones por Retroviridae/transmisión
2.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943984

RESUMEN

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Asunto(s)
Retrovirus Endógenos , Evolución Molecular , Gammaretrovirus , Phascolarctidae , Animales , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variación Genética , Nueva Gales del Sur , Phascolarctidae/virología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Victoria
3.
Virol J ; 21(1): 177, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107806

RESUMEN

BACKGROUND: Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections. METHODS: To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control. RESULTS: In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens. CONCLUSION: In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.


Asunto(s)
Anticuerpos Antivirales , Pollos , Exosomas , Enfermedades de las Aves de Corral , Virus de la Reticuloendoteliosis , Infecciones por Retroviridae , Esparcimiento de Virus , Animales , Exosomas/virología , Exosomas/inmunología , Anticuerpos Antivirales/inmunología , Pollos/virología , Virus de la Reticuloendoteliosis/inmunología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/inmunología , Infecciones por Retroviridae/virología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/veterinaria , Anticuerpos Neutralizantes/inmunología , Línea Celular , Viremia/virología , Femenino
4.
Nephrol Dial Transplant ; 39(8): 1221-1227, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38281060

RESUMEN

Xenotransplantation using pig cells, tissues or organs is under development to alleviate the shortage of human donor organs. Meanwhile, remarkably long survival times of pig organs in non-human primates have been reported, as well as the functionality of pig kidneys and hearts in brain-dead humans. Most importantly, two transplantations of pig hearts in patients were performed with survival times of the patients of 8 and 6 weeks. Xenotransplantation may be associated with the transmission of porcine microorganisms including viruses to the recipient. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated like other viruses can. PERVs are able to infect certain human cells and therefore pose a risk for xenotransplantation. It is well known that retroviruses are able to induce tumors and immunodeficiencies. However, until now, PERVs were not transmitted in all infection experiments using small animals and non-human primates, in all preclinical xenotransplantation trials in non-human primates and in all clinical trials in humans. In addition, several strategies including antiretrovirals, PERV-specific small interfering RNA, vaccines and genome editing using CRISPR/Cas have been developed to prevent PERV transmission.


Asunto(s)
Retrovirus Endógenos , Trasplante Heterólogo , Animales , Trasplante Heterólogo/efectos adversos , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidad , Porcinos , Humanos , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología
5.
J Med Primatol ; 53(4): e12726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39073161

RESUMEN

Historically, to generate Simian Retrovirus (SRV) positive control materials, we performed in vivo passage by inoculating uninfected rhesus macaques with whole blood from an SRV-1 infected (antibody and PCR positive) macaque. However, recent attempts using this approach have failed. This study reports observations and explores why it has become more difficult to transmit SRV via in vivo passage.


Asunto(s)
Macaca mulatta , Enfermedades de los Monos , Infecciones por Retroviridae , Retrovirus de los Simios , Animales , Macaca mulatta/virología , Retrovirus de los Simios/aislamiento & purificación , Retrovirus de los Simios/fisiología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Enfermedades de los Monos/virología , Enfermedades de los Monos/transmisión , Infecciones Tumorales por Virus/veterinaria , Infecciones Tumorales por Virus/virología , Infecciones Tumorales por Virus/transmisión
6.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493581

RESUMEN

Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.


Asunto(s)
Variación Genética/genética , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Retroviridae/genética , Animales , Evolución Molecular , Femenino , Masculino , Phascolarctidae , Queensland
7.
New Microbiol ; 47(1): 38-46, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700882

RESUMEN

The shortage of organs for human transplantation is a topic of extreme interest, and xenotransplantation with porcine organs has been recognized as a promising solution. However, the potential spillover linked to infectious agents present in pigs remains a concern. Among these, Pig Endogenous Retroviruses (PERVs), whose proviral DNAs are integrated in the genome of all pig breeds, represent an extremely important biological risk. This study aims to evaluate PERVs distribution in several swine cell lines and samples of domestic and feral pigs. Moreover, the capacity of PERVs to infect human and non-human primate cells and to integrate in the cellular genome was tested by Real-Time PCR and by Reverse Transcriptase assay. Results indicated a widespread diffusion of PERVs both in cell lines and samples analysed: the viral genome was found in all the established cell lines, in 40% of the primary cell lines and in 60% of the tissue samples tested. The assays indicated that the virus can be transmitted from porcine to human cells: in the specific case, infected NSK and NPTr cells allow passage to human 293 and MRC-5 cells with active production of the virus demonstrable via PCR and RT assay. In light of these aspects and also the lack of studies on PERVs, it appears clear that there are still many questions to be clarified, also by means of future studies, before xenotransplantation can be considered microbiologically safe.


Asunto(s)
Retrovirus Endógenos , Animales , Retrovirus Endógenos/genética , Retrovirus Endógenos/aislamiento & purificación , Porcinos , Humanos , Línea Celular , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Infecciones por Retroviridae/transmisión
8.
J Virol ; 95(14): e0048421, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33910951

RESUMEN

Foamy viruses (FVs) are complex retroviruses that can infect humans and other animals. In this study, by integrating transcriptomic and genomic data, we discovered 412 FVs from 6 lineages in amphibians, which significantly increased the known set of FVs in amphibians. Among these lineages, salamander FVs maintained a coevolutionary pattern with their hosts that could be dated back to the Paleozoic era, while in contrast, frog FVs were much more likely acquired from cross-species (class-level) transmission in the Cenozoic era. In addition, we found that three distinct FV lineages had integrated into the genome of a salamander. Unexpectedly, we identified a lineage of endogenous FVs in caecilians that expressed all complete major genes, demonstrating the potential existence of an exogenous form of FV outside of mammals. Our discovery of rare phenomena in amphibian FVs has significantly increased our understanding of the macroevolution of the complex retrovirus. IMPORTANCE Foamy viruses (FVs) represent, more so than other viruses, the best model of coevolution between a virus and a host. This study represents the largest investigation so far of amphibian FVs and reveals 412 FVs of 6 distinct lineages from three major orders of amphibians. Besides a coevolutionary pattern, cross-species and repeated infections were also observed during the evolution of amphibian FVs. Remarkably, expressed FVs including a potential exogenous form were discovered, suggesting that active FVs might be underestimated in nature. These findings revealed that the multiple origins and complex evolution of amphibian FVs started from the Paleozoic era.


Asunto(s)
Anfibios/virología , Evolución Molecular , Infecciones por Retroviridae/transmisión , Spumavirus , Animales , Genoma Viral , Historia Antigua , Interacciones Huésped-Patógeno , Filogenia , Infecciones por Retroviridae/virología , Tiempo
9.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188730

RESUMEN

Koala retrovirus (KoRV) is of an interest to virologists due to its currently active endogenization into the koala (Phascolarctos cinereus) genome. Although KoRV has frequently been isolated in wild and captive koala populations, its pathogenesis and transmission remain to be fully characterized, and most previous research has concentrated on adult koalas rather than on joeys. Here, we characterized KoRV isolates obtained from a deceased male joey and its parents (animals reared in a Japanese zoo) to investigate KoRV transmission mode and pathogenesis. We sequenced the KoRV long terminal repeat (LTR) and envelope genes isolated from the joey and its parents and found KoRV-A and KoRV-C in genomic DNA from both the parents and the joey. Notably, both parents were also positive for KoRV-B, whereas the joey was KoRV-B negative, further confirming that KoRV-B is an exogenous strain. The KoRV LTR sequence of the joey was considerably closer to that of its sire than its dam. For further characterization, total KoRV, KoRV-A, KoRV-B, and KoRV-C proviral loads were quantified in peripheral blood mononuclear cells from the parents and in blood samples from the joey. Total KoRV, KoRV-A, and KoRV-C proviral loads were also quantified for different tissues (bone, liver, kidney, lung, spleen, heart, and muscle) from the joey, revealing differences suggestive of a distinct tissue tropism (highest total KoRV proviral load in the spleen and lowest in bone). The amount of KoRV-C in the parents was less than that in the joey. Our findings contribute to an improved understanding of KoRV pathogenesis and transmission mode and highlight useful areas for future research.IMPORTANCE KoRV is unique among retroviruses in that one strain (KoRV-A) is undergoing endogenization, whereas the other main subtype (KoRV-B) and another subtype (KoRV-C) are reportedly exogenous strains. Its transmission and pathogenesis are of interest in the study of retroviruses and are crucial for any conservation strategy geared toward koala health. This study provides new evidence on the modes of KoRV transmission from parent koalas to their joey. We found vertical transmission of KoRV-A, confirming its endogenization, but with closer conservation between the joey and its sire than its dam (previous reports on joeys are rare but have postulated dam-to-joey vertical transmission). This is also the first report of a KoRV-B-negative joey from KoRV-B-positive parents, contrasting with the few previous reports of 100% transmission of KoRV-B from dams to joeys. Thus, the results in this study give some novel insights for the transmission mode of KoRV.


Asunto(s)
Evolución Molecular , Phascolarctidae/virología , Infecciones por Retroviridae , Retroviridae , Secuencias Repetidas Terminales , Animales , Femenino , Japón , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Masculino , Retroviridae/genética , Retroviridae/metabolismo , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria
10.
Retrovirology ; 17(1): 34, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008414

RESUMEN

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , Animales Salvajes , Animales de Zoológico , Australia/epidemiología , Femenino , Gammaretrovirus/clasificación , Gammaretrovirus/aislamiento & purificación , Gammaretrovirus/patogenicidad , Variación Genética , Masculino , Epidemiología Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , ARN Viral/genética , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología , Estados Unidos/epidemiología , Carga Viral
11.
PLoS Pathog ; 14(10): e1007293, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30296302

RESUMEN

Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses (SFVs) are complex retroviruses which are currently spilling over to humans. Replication-competent SFVs persist over the lifetime of their human hosts, without spreading to secondary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to perform an in-depth characterization of neutralizing antibodies raised by humans infected with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and laboratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was identified by direct sequencing of the env gene amplified from the buffy coat with genotype-specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target the dimorphic portion of the envelope protein surface domain. Epitopes recognized by neutralizing antibodies have been conserved during the cospeciation of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples of SFV-infected humans was statistically associated with smaller SFV-related hematological changes. The neutralization patterns provide evidence for persistent expression of viral proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised against zoonotic SFV target immunodominant and conserved epitopes located in the receptor binding domain. These properties support their potential role in restricting the spread of SFV in the human population.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Vectores de Enfermedades , Epítopos/inmunología , Hominidae/inmunología , Infecciones por Retroviridae/transmisión , Virus Espumoso de los Simios/aislamiento & purificación , Proteínas del Envoltorio Viral/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Gorilla gorilla/virología , Hominidae/sangre , Hominidae/virología , Humanos , Masculino , Persona de Mediana Edad , Pan troglodytes/virología , Infecciones por Retroviridae/virología
12.
Arch Virol ; 165(11): 2409-2417, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32770481

RESUMEN

Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.


Asunto(s)
Gammaretrovirus/clasificación , Transmisión Vertical de Enfermedad Infecciosa , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Secuencia de Aminoácidos , Animales , Australia/epidemiología , Infecciones por Chlamydia/veterinaria , Infecciones por Chlamydia/virología , Evolución Molecular , Neoplasias/veterinaria , Neoplasias/virología , Phascolarctidae/inmunología , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión
13.
Emerg Infect Dis ; 25(1): 92-101, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561312

RESUMEN

The endangered Florida panther (Puma concolor coryi) had an outbreak of infection with feline leukemia virus (FeLV) in the early 2000s that resulted in the deaths of 3 animals. A vaccination campaign was instituted during 2003-2007 and no additional cases were recorded until 2010. During 2010-2016, six additional FeLV cases were documented. We characterized FeLV genomes isolated from Florida panthers from both outbreaks and compared them with full-length genomes of FeLVs isolated from contemporary Florida domestic cats. Phylogenetic analyses identified at least 2 circulating FeLV strains in panthers, which represent separate introductions from domestic cats. The original FeLV virus outbreak strain is either still circulating or another domestic cat transmission event has occurred with a closely related variant. We also report a case of a cross-species transmission event of an oncogenic FeLV recombinant (FeLV-B). Evidence of multiple FeLV strains and detection of FeLV-B indicate Florida panthers are at high risk for FeLV infection.


Asunto(s)
Brotes de Enfermedades/veterinaria , Genoma Viral/genética , Virus de la Leucemia Felina/genética , Puma/virología , Infecciones por Retroviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , Gatos , Especies en Peligro de Extinción , Florida/epidemiología , Virus de la Leucemia Felina/aislamiento & purificación , Filogenia , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología
14.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237837

RESUMEN

The recent acquisition of a novel retrovirus (KoRV) by koalas (Phascolarctos cinereus) has created new opportunities for retroviral research and new challenges for koala conservation. There are currently two major subtypes of KoRV: KoRV-A, which is believed to be endogenous only in koalas from the northern part of Australia, and KoRV-B, which appears to be exogenous. Understanding and management of these subtypes require population level studies of their prevalence and diversity, especially when coinfected in the same population, and investigations of their modes of transmission in the wild. Toward this end, we studied a wild Queensland koala population of 290 animals over a 5-year period and investigated the prevalence, diversity and mode of transmission of KoRV-A and KoRV-B. We found KoRV-A to have an infection level of 100% in the population, with all animals sharing the same dominant envelope protein sequence. In contrast, the KoRV-B infection prevalence was only 24%, with 21 different envelope protein sequence variants found in the 83 KoRV-B-positive animals. Linked to severe disease outcomes, a significant association between KoRV-B positivity and both chlamydial disease and neoplasia was found in the population. Transmission of KoRV-B was found at a rate of 3% via adult-to-adult contact per year, while there was a 100% rate of KoRV-B-positive mothers transmitting the virus to their joeys. Collectively, these findings demonstrate KoRV-B as the pathogenic subtype in this wild koala population and inform future intervention strategies with subtype variation and transmission data. IMPORTANCE KoRV represents a unique opportunity to study a relatively young retrovirus as it goes through its molecular evolution in both an endogenous form and a more recently evolved exogenous form. The endogenous form, KoRV-A, now appears to have stably and completely established itself in Northern Australian koala populations and is progressing south. Conversely, the exogenous form, KoRV-B, is undergoing continuous mutation and spread in the north and, as yet, has not reached all southern koala populations. We can now link KoRV-B to neoplasia and chlamydial disease in both wild and captive koalas, making it an imminent threat to this already vulnerable species. This work represents the largest study of koalas in a wild population with respect to KoRV-A/KoRV-B-infected/coinfected animals and the linkage of this infection to chlamydial disease, neoplasia, viral evolution, and spread.


Asunto(s)
Infecciones por Chlamydia/epidemiología , Gammaretrovirus/clasificación , Productos del Gen env/genética , Transmisión Vertical de Enfermedad Infecciosa , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/veterinaria , Secuencia de Aminoácidos , Animales , Australia/epidemiología , Evolución Molecular , Femenino , Gammaretrovirus/genética , Masculino , Neoplasias/veterinaria , Neoplasias/virología , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología
15.
Fish Shellfish Immunol ; 86: 179-185, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30458308

RESUMEN

Recently, we reported an emerging pathology named Brown Muscle Disease (BMD) affecting Asari clams inhabiting the most productive area for this species in France, the Arcachon Bay. The main macroscopic feature of the pathology relies on the atrophy of the posterior adductor muscle, affecting the ability of clams to burry. The research of the etiological agent of BMD privileged a viral infection. Contrary to healthy clams, infected animals are always found at the surface of the sediment and exhibit 30 nm virus-like particles in muscle, granulocytic and rectal cells. In order to get more insights on the etiology and impacts of the BMD on clams, we took advantage in the present study of next generation sequencing technologies. An RNA-Seq approach was used (i) to test whether viral RNA sequences can be specifically found in the transcriptome of diseased animals and (ii) to identify the genes that are differentially regulated between diseased and healthy clams. Contrary to healthy buried animals, in diseased clams one sequence showing extensive homologies with retroviridae-related genes was detected. Among the biological processes that were affected in diseased clams, the synaptic transmission process was the most represented. To deepen this result, a new sampling was carried out and the transcription level of genes involved in synaptic transmission was determined in healthy and diseased clams but also in clams with no visible sign of pathology but located at the surface of the sediment. Our findings suggest that muscle atrophy is a latter sign of the pathology and that nervous system could be instead a primary target of the BMD agent.


Asunto(s)
Bivalvos/virología , Enfermedades Musculares/etiología , Retroviridae/aislamiento & purificación , Animales , Francia , Enfermedades Musculares/virología , Infecciones por Retroviridae/transmisión , Análisis de Secuencia de ARN , Transmisión Sináptica , Transcriptoma
16.
Retrovirology ; 15(1): 28, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609635

RESUMEN

Porcine endogenous retroviruses (PERVs) are present in the genome of all pigs, they infect certain human cells and therefore pose a special risk for xenotransplantation using pig cells, tissues and organs. Xenotransplantation is being developed in order to alleviate the reduced availability of human organs. Despite the fact that PERVs are able to infect certain human cells and cells from other species, transmission of PERVs has not been observed when animals (including non-human primates) were inoculated with PERV preparations or during preclinical xenotransplantations. The data indicate that PERVs were not transmitted because they were not released from the transplant or were inhibited by intracellular restriction factors and innate immunity in the recipient. In a single study in guinea pigs, a transient PERV infection and anti-PERV antibodies were described, indicating that in this case at least, the immune system may also have been involved.


Asunto(s)
Retrovirus Endógenos/fisiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Animales , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Modelos Animales , Primates , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Porcinos , Trasplante Heterólogo
17.
J Gen Virol ; 99(2): 253-257, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29256850

RESUMEN

Following artificial insemination, the egg-laying rate of a large-scale breeder chicken flock declined by10-15 %. Real-time quantitative polymerase chain reaction (qPCR) analysis detected the presence of reticuloendotheliosis virus (REV) in semen from the breeder cocks used. Six REV strains were successfully isolated from semen randomly extracted from those cocks. Additionally, the whole sequence of SDAUR-S1 was sequenced and analysed. Cock models with continuous production of REV-positive semen were established by intravenous injection with SDAUR-S1. Eggs were then collected from hens after artificial insemination with REV-positive semen, for virus detection. The positive REV antibody rate for egg albumen was 58.3 % and the REV-positive rate for hatched embryos was 8.3 %, which suggested not only that REV can infect cock semen, but can also infect the offspring. In conclusion, the present study is the first to report on the isolation, genome analysis and transmission of REV in cock semen.


Asunto(s)
Pollos/virología , Enfermedades de las Aves de Corral/transmisión , Virus de la Reticuloendoteliosis/inmunología , Infecciones por Retroviridae/veterinaria , Semen/virología , Infecciones Tumorales por Virus/veterinaria , Animales , Femenino , Genoma Viral/genética , Inseminación Artificial/veterinaria , Masculino , Óvulo/virología , Enfermedades de las Aves de Corral/virología , Virus de la Reticuloendoteliosis/genética , Virus de la Reticuloendoteliosis/aislamiento & purificación , Virus de la Reticuloendoteliosis/fisiología , Infecciones por Retroviridae/transmisión , Infecciones Tumorales por Virus/transmisión
18.
Xenotransplantation ; 25(6): e12409, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29782054

RESUMEN

BACKGROUND: Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). METHODS: HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). RESULTS: No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. CONCLUSIONS: With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches.


Asunto(s)
Alginatos/metabolismo , Retrovirus Endógenos/patogenicidad , Islotes Pancreáticos/virología , Infecciones por Retroviridae/transmisión , Animales , Diabetes Mellitus Tipo 1/virología , Células HEK293 , Humanos , Islotes Pancreáticos/citología , Trasplante de Islotes Pancreáticos/métodos , Porcinos , Trasplante Heterólogo/métodos , Zoonosis/virología
19.
J Immunol ; 197(9): 3628-3638, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647833

RESUMEN

Elucidation of the immune requirements for control or elimination of retroviral infection remains an important aim. We studied the induction of adaptive immunity to neonatal infection with a murine retrovirus, under conditions leading to immunological tolerance. We found that the absence of either maternal or offspring adaptive immunity permitted efficient vertical transmission of the retrovirus. Maternal immunodeficiency allowed the retrovirus to induce central Th cell tolerance in the infected offspring. In turn, this compromised the offspring's ability to mount a protective Th cell-dependent B cell response. However, in contrast to T cells, offspring B cells were not centrally tolerized and retained their ability to respond to the infection when provided with T cell help. Thus, escape of retrovirus-specific B cells from deletional tolerance offers the opportunity to induce protective retroviral immunity by restoration of retrovirus-specific T cell help, suggesting similar T cell immunotherapies for persistent viral infections.


Asunto(s)
Traslado Adoptivo , Linfocitos B/inmunología , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Virus de la Leucemia Murina/inmunología , Leucemia Experimental/prevención & control , Infecciones por Retroviridae/prevención & control , Linfocitos T/inmunología , Infecciones Tumorales por Virus/prevención & control , Animales , Animales Recién Nacidos , Linfocitos B/trasplante , Linfocitos B/virología , Células Cultivadas , Tolerancia Central , Femenino , Leucemia Experimental/inmunología , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/transmisión , Linfocitos T/trasplante , Linfocitos T/virología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/transmisión
20.
Clin Microbiol Rev ; 29(4): 749-57, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27358491

RESUMEN

In 2006, a new virus, xenotropic murine leukemia virus-related virus (XMRV), was discovered in a cohort of U.S. men with prostate cancer. Soon after this initial finding, XMRV was also detected in samples from patients with chronic fatigue syndrome (CFS). The blood community, which is highly sensitive to the threat of emerging infectious diseases since the HIV/AIDS crisis, recommended indefinite deferral of all blood donors with a history of CFS. As XMRV research progressed, conflicting results emerged regarding the importance of this virus in the pathophysiology of prostate cancer and/or CFS. Molecular biologists traced the development of XMRV to a recombination event in a laboratory mouse that likely occurred circa 1993. The virus was propagated via cell lines derived from a tumor present in this mouse and spread through contamination of laboratory samples. Well-controlled experiments showed that detection of XMRV was due to contaminated samples and was not a marker of or a causal factor in prostate cancer or CFS. This paper traces the development of XMRV in the prostate and CFS scientific communities and explores the effect it had on the blood community.


Asunto(s)
Síndrome de Fatiga Crónica/etiología , Neoplasias de la Próstata/etiología , Infecciones por Retroviridae/complicaciones , Infecciones por Retroviridae/transmisión , Reacción a la Transfusión , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/aislamiento & purificación , Animales , Sangre/virología , Evolución Molecular , Síndrome de Fatiga Crónica/epidemiología , Humanos , Masculino , Ratones , Neoplasias de la Próstata/epidemiología , Infecciones por Retroviridae/virología , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA