RESUMEN
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
Asunto(s)
Fármacos Antiobesidad , Reacción de Prevención , Receptor del Péptido 1 Similar al Glucagón , Vías Nerviosas , Rombencéfalo , Respuesta de Saciedad , Animales , Femenino , Masculino , Ratones , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/farmacología , Área Postrema/metabolismo , Área Postrema/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Obesidad/metabolismo , Rombencéfalo/citología , Rombencéfalo/efectos de los fármacos , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , AlimentosRESUMEN
Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.
Asunto(s)
Metabolismo Energético , Factor 15 de Diferenciación de Crecimiento , Músculo Esquelético , Pérdida de Peso , Animales , Humanos , Ratones , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Depresores del Apetito/uso terapéutico , Restricción Calórica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores Adrenérgicos beta/metabolismo , Pérdida de Peso/efectos de los fármacosRESUMEN
The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60â d, then administered several mAChR antagonists 30â min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24â h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.
Asunto(s)
Dieta Alta en Grasa , Endocannabinoides , Glicéridos , Ratones Endogámicos C57BL , Obesidad , Transducción de Señal , Transmisión Sináptica , Animales , Endocannabinoides/metabolismo , Masculino , Obesidad/metabolismo , Ratones , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/fisiología , Glicéridos/metabolismo , Ácidos Araquidónicos/metabolismo , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/metabolismo , Eje Cerebro-Intestino/fisiologíaRESUMEN
Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15's anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15's specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.
Asunto(s)
Camptotecina/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/genética , Obesidad/prevención & control , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Camptotecina/farmacocinética , Línea Celular , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Células HL-60 , Humanos , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/genética , Células PC-3RESUMEN
Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption1,2. By contrast, oral sodium detection rapidly quenches sodium appetite3,4, suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste-but not sodium ingestion per se-is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance.
Asunto(s)
Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Ingestión de Alimentos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sodio/farmacología , Gusto/efectos de los fármacos , Gusto/fisiología , Administración Oral , Animales , Regulación del Apetito/genética , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Encefalinas/metabolismo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Homeostasis/fisiología , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Masculino , Ratones , Motivación/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Sodio/administración & dosificación , Gusto/genéticaRESUMEN
Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and 3 mo after SG. Twelve participants scheduled for SG were included. Before and 3 mo after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 min before meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted 3 mo after surgery. Both before and after SG, postprandial glucose concentrations increased dose dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of ß-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. In conclusion, ghrelin infusion increases postprandial plasma glucose concentrations and impairs ß-cell function before and after SG but has no effect on ad libitum meal intake. We speculate that the lower concentration of ghrelin after SG may impact glucose metabolism following this procedure.NEW & NOTEWORTHY Ghrelin's effect on glucose tolerance and food intake following sleeve gastrectomy (SG) was evaluated. Acyl-ghrelin was infused during a mixed-meal and ad libitum meals before and 3 mo after surgery. Postprandial glucose concentrations increased during ghrelin infusions, both before and after surgery, while insulin production was inhibited. However, ad libitum meal intake did not differ during ghrelin administration compared with placebo. The decreased ghrelin concentration following SG may contribute to the glycemic control after surgery.
Asunto(s)
Apetito , Glucemia , Ingestión de Alimentos , Gastrectomía , Ghrelina , Periodo Posprandial , Humanos , Ghrelina/sangre , Ghrelina/análogos & derivados , Masculino , Adulto , Femenino , Apetito/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Periodo Posprandial/efectos de los fármacos , Persona de Mediana Edad , Insulina/sangre , Obesidad Mórbida/cirugía , Obesidad Mórbida/metabolismo , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/sangre , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina/fisiología , Método Doble Ciego , Obesidad/cirugía , Obesidad/metabolismoRESUMEN
Patients diagnosed with obesity are prescribed opioid medications at a higher rate than the general population; however, it is not known if eating a high fat diet might impact individual sensitivity to these medications. To explore the hypothesis that eating a high fat diet increases sensitivity of rats to the effects of morphine, 24 female Sprague-Dawley rats (n = 8/diet) ate either a standard (low fat) laboratory chow (17% kcal from fat), a high fat/low carbohydrate (ketogenic) chow (90.5% kcal from fat), or a traditional high fat/high carbohydrate chow (60% kcal from fat). Morphine-induced antinociception was assessed using a warm water tail withdrawal procedure, during which latency (in seconds) for rats to remove their tail from warm water baths was recorded following saline or morphine (0.32-56 mg/kg, i.p.) injections. Morphine was administered acutely and chronically (involving 18 days of twice-daily injections, increasing in 1/4 log dose increments every 3 days: 3.2-56 mg/kg, i.p., to induce dependence and assess tolerance). The adverse effects of morphine (i.e., tolerance, withdrawal, and changes in body temperature) were assessed throughout the study. Acute morphine induced comparable antinociception in rats eating different diets, and all rats developed tolerance following chronic morphine exposure. Observable withdrawal signs and body temperature were also comparable among rats eating different diets; however, withdrawal-induced weight loss was less severe for rats eating ketogenic chow. These results suggest that dietary manipulation might modulate the severity of withdrawal-related weight loss in ways that could be relevant for patients.
Asunto(s)
Dieta Alta en Grasa , Dieta Cetogénica , Morfina , Ratas Sprague-Dawley , Animales , Femenino , Morfina/farmacología , Morfina/administración & dosificación , Ratas , Dieta Alta en Grasa/efectos adversos , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Carbohidratos de la Dieta , Ingestión de Alimentos/efectos de los fármacosRESUMEN
INTRODUCTION: GLP-1 receptor agonists are the number one drug prescribed for the treatment of obesity and type 2 diabetes. These drugs are not, however, without side effects, and in an effort to maximize therapeutic effect while minimizing adverse effects, gut hormone co-agonists received considerable attention as new drug targets in the fight against obesity. Numerous previous reports identified the neuropeptide oxytocin (OXT) as a promising anti-obesity drug. The aims of this study were to evaluate OXT as a possible co-agonist for GLP-1 and examine the effects of its co-administration on food intake (FI) and body weight (BW) in mice. METHODS: FI and c-Fos levels were measured in the feeding centers of the brain in response to an intraperitoneal injection of saline, OXT, GLP-1, or OXT/GLP-1. The action potential frequency and cytosolic Ca2+ ([Ca2+]i) in response to OXT, GLP-1, or OXT/GLP-1 were measured in ex vivo paraventricular nucleus (PVN) neuronal cultures. Finally, FI and BW changes were compared in diet-induced obese mice treated with saline, OXT, GLP-1, or OXT/GLP-1 for 13 days. RESULTS: Single injection of OXT/GLP-1 additively decreased FI and increased c-Fos expression specifically in the PVN and supraoptic nucleus. Seventy percent of GLP-1 receptor-positive neurons in the PVN also expressed OXT receptors, and OXT/GLP-1 co-administration dramatically increased firing and [Ca2+]i in the PVN OXT neurons. The chronic OXT/GLP-1 co-administration decreased BW without changing FI. CONCLUSION: Chronic OXT/GLP-1 co-administration decreases BW, possibly via the activation of PVN OXT neurons. OXT might be a promising candidate as an incretin co-agonist in obesity treatment.
Asunto(s)
Peso Corporal , Ingestión de Alimentos , Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Oxitocina , Oxitocina/administración & dosificación , Oxitocina/farmacología , Oxitocina/metabolismo , Animales , Péptido 1 Similar al Glucagón/metabolismo , Masculino , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ratones , Peso Corporal/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismoRESUMEN
Platelet-activating factor (PAF) plays a significant role in several leucocyte functions, including platelet aggregation and inflammation. Additionally, PAF has a role in the behavioral and physiological changes in mammals. However, the effect of PAF has not been well studied in birds. Therefore, the study aimed to determine if PAF affects feeding behavior, voluntary activity, cloacal temperature, and feed passage through the digestive tract in chicks (Gallus gallus). We also studied the involvement of PAF in the innate immune system induced by lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria. Both intraperitoneal (IP) and intracerebroventricular (ICV) injections of PAF significantly decreased food intake. IP injection of PAF significantly decreased voluntary activity and slowed the feed passage from the crop, whereas ICV injection had no effect. Conversely, ICV injection of PAF significantly increased the cloacal temperature, but IP injection had no effect. The IP injection of LPS significantly reduced the mRNA expression of lysophosphatidylcholine acyltransferase 2, an enzyme responsible for PAF production in the heart and pancreas. On the other hand, LPS significantly increased the mRNA expression of the PAF receptor in the peripheral organs. The present study shows that PAF influences behavioral and physiological responses and is related to the response against bacterial infections in chicks.
Asunto(s)
Temperatura Corporal , Pollos , Cloaca , Buche de las Aves , Ingestión de Alimentos , Factor de Activación Plaquetaria , Animales , Masculino , Temperatura Corporal/efectos de los fármacos , Cloaca/efectos de los fármacos , Cloaca/fisiología , Buche de las Aves/efectos de los fármacos , Buche de las Aves/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Lipopolisacáridos/farmacología , Factor de Activación Plaquetaria/farmacología , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genéticaRESUMEN
Consumption of palatable food (PF) can alleviate anxiety, and pain in humans. Contrary, spontaneous withdrawal of long-term PF intake produces anxiogenic-like behavior and abnormal pain sensation, causing challenges to weight-loss diet and anti-obesity agents. Thus, we examined α7-nicotinic acetylcholine receptors (α7nAChR) involvement since it plays essential role in nociception and psychological behaviors. METHODS: Adult male C57BL/6 mice were placed on a Standard Chow (SC) alone or with PF on intermittent or continuous regimen for 6 weeks. Then, mice were replaced with normal SC (spontaneous withdrawal). Body weight, food intake, and calories intake with and without the obesogenic diet were measured throughout the study. During PF withdrawal, anxiety-like behaviors and pain sensitivity were measured with PNU-282987 (α7nAChR agonist) administration. RESULTS: Six weeks of SC + PF-intermittent and continuous paradigms produced a significant weight gain. PF withdrawal displayed hyperalgesia and anxiety-like behaviors. During withdrawal, PNU-282987 significantly attenuated hyperalgesia and anxiety-like behaviors. CONCLUSION: The present study shows that a PF can increase food intake and body weight. Also, enhanced pain sensitivity and anxiety-like behavior were observed during PF withdrawal. α7nAChR activation attenuated anxiolytic-like behavior and hyperalgesia in PF abstinent mice. These data suggest potential therapeutic effects of targeting α7 nAChRs for obesity-withdrawal symptoms in obese subjects.
Asunto(s)
Ansiedad , Benzamidas , Compuestos Bicíclicos con Puentes , Hiperalgesia , Ratones Endogámicos C57BL , Obesidad , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Masculino , Ansiedad/etiología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Benzamidas/farmacología , Benzamidas/administración & dosificación , Obesidad/psicología , Obesidad/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Ratones , Ingestión de Alimentos/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Aumento de Peso/efectos de los fármacosRESUMEN
Cobalt protoporphyrin (CoPP) is a synthetic heme analog that has been observed to reduce food intake and promote sustained weight loss. While the precise mechanisms responsible for these effects remain elusive, earlier research has hinted at the potential involvement of nitric oxide synthase in the hypothalamus. This study aimed to delve into CoPP's impact on the activities of crucial antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) across seven distinct brain regions (hippocampus, hypothalamus, prefrontal cortex, motor cortex, striatum, midbrain, and cerebellum), as well as in the liver and kidneys. Female Wistar rats weighing 180 to 200 grams received a single subcutaneous dose of 25 µmol/kg CoPP. After six days, brain tissue was extracted to assess the activities of antioxidant enzymes and quantify malondialdehyde levels. Our findings confirm that CoPP administration triggers the characteristic effects of decreased food intake and reduced body weight. Moreover, it led to an increase in SOD activity in the hypothalamus, a pivotal brain region associated with food intake regulation. Notably, CoPP-treated rats exhibited elevated enzymatic activity of catalase, GR, and GST in the motor cortex without concurrent signs of heightened oxidative stress. These results underscore a strong connection between the antioxidant system and food intake regulation. They also emphasize the need for further investigation into the roles of antioxidant enzymes in modulating food intake and the ensuing weight loss, using CoPP as a valuable research tool.
Asunto(s)
Antioxidantes , Hipotálamo , Corteza Motora , Protoporfirinas , Animales , Femenino , Ratas , Antioxidantes/metabolismo , Peso Corporal/efectos de los fármacos , Catalasa/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/efectos de los fármacos , Glutatión Reductasa/metabolismo , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/enzimología , Malondialdehído/metabolismo , Corteza Motora/efectos de los fármacos , Corteza Motora/metabolismo , Corteza Motora/enzimología , Estrés Oxidativo/efectos de los fármacos , Protoporfirinas/farmacología , Ratas Wistar , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismoRESUMEN
Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.
Asunto(s)
Microbioma Gastrointestinal , Glicina , Glifosato , Herbicidas , Abejas/efectos de los fármacos , Abejas/microbiología , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Herbicidas/toxicidad , Expresión Génica/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Metaboloma/efectos de los fármacos , MetabolómicaRESUMEN
Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.
Asunto(s)
Exenatida , Animales , Exenatida/administración & dosificación , Exenatida/farmacocinética , Exenatida/farmacología , Gatos , Masculino , Femenino , Sistemas de Liberación de Medicamentos/veterinaria , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Peso Corporal , Liberación de Fármacos , Implantes de Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Ponzoñas/administración & dosificación , Ponzoñas/farmacocinética , Receptor del Péptido 1 Similar al Glucagón/agonistasRESUMEN
Research on sex differences has increased across various fields, including cancer and its treatment domains. Reports have indicated sex differences in cancer incidence, survival rates, and the efficacy of anticancer drugs. However, such reports are limited, and in-depth assessments of the underlying mechanisms are still in progress. Although various chemotherapeutic regimens are applicable for breast cancer treatment, reports have surfaced regarding weight gain in female patients undergoing fluorouracil, epirubicin, cyclophosphamide (FEC) or cyclophosphamide, methotrexate, fluorouracil (CMF) therapy. We hypothesized the potential of 5-fluorouracil (5-FU) in weight gain and sex-related differences. To address this, we conducted experiments in mice to confirm weight gain and sex differences following 5-FU administration, and elucidate the underlying mechanisms. Our findings revealed weight gain and increased food intake in female mice following 5-FU administration. Additionally, female mice receiving 5-FU exhibited increased norepinephrine and α1- and α2-adrenergic receptor expression, reduced estradiol levels, and increased ghrelin levels. These results indicate 5-FU administration-induced sex differences in weight gain and implicate increased food intake because of increased norepinephrine and α1- and α2-adrenergic receptor expression, reduced estradiol levels, and a subsequent increase in ghrelin levels, which contribute to weight gain in female patients undergoing CMF therapy.
Asunto(s)
Fluorouracilo , Ghrelina , Caracteres Sexuales , Aumento de Peso , Animales , Femenino , Aumento de Peso/efectos de los fármacos , Masculino , Antimetabolitos Antineoplásicos , Ingestión de Alimentos/efectos de los fármacos , Ratones , Estradiol/sangre , Norepinefrina/metabolismo , Ratones Endogámicos C57BLRESUMEN
PURPOSE: Liver-expressed antimicrobial peptide 2 (LEAP-2) has been recently identified as the endogenous non-competitive allosteric antagonist of the growth hormone secretagogue receptor 1a (GHSR1a). In rodents, LEAP-2 blunts ghrelin-induced feeding and its plasma levels are modulated in response to nutritional status, being decreased upon fasting and increased in high-fat diet (HFD) fed mice. Clinical data support the regulation of circulating LEAP-2 by nutrient availability in humans. In this work, our primary objective was to examine the chronic effects of ghrelin and LEAP-2 administration on food intake, adiposity, and energy expenditure in young mice subjected to standard and HFD at both room temperature and at thermoneutrality. Furthermore, we aimed to assess the impact of these two hormones on aging mice. RESULTS: Our results indicate that LEAP-2 produces a significant decrease of body weight and adiposity, an increase in energy expenditure, and activation of the thermogenic program in white and brown adipose tissue depots. However, this effect is not maintained under HFD or under thermoneutral conditions and is only partially observed in aging mice. CONCLUSION: In summary our studies describe the central effects of LEAP-2 within distinct experimental contexts, and contribute to the comprehension of LEAP-2's role in energy metabolism.
Asunto(s)
Envejecimiento , Dieta Alta en Grasa , Metabolismo Energético , Ghrelina , Homeostasis , Animales , Ghrelina/farmacología , Ghrelina/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Masculino , Péptidos Catiónicos Antimicrobianos/metabolismo , Ratones Endogámicos C57BL , Termogénesis/efectos de los fármacos , Adiposidad/efectos de los fármacos , Adiposidad/fisiología , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Proteínas SanguíneasRESUMEN
The dynorphin peptides are the endogenous ligands for the kappa opioid receptor (KOR) and regulate food intake. Administration of dynorphin-A1-13 (DYN) in the paraventricular hypothalamic nucleus (PVN) increases palatable food intake, and this effect is blocked by co-administration of the orexin-A neuropeptide, which is co-released with DYN in PVN from neurons located in the lateral hypothalamus. While PVN administration of DYN increases palatable food intake, whether it increases food-seeking behaviors has yet to be examined. We tested the effects of DYN and norBNI (a KOR antagonist) on the seeking and consumption of sucrose using a progressive ratio (PR) and demand curve (DC) tasks. In PVN, DYN did not alter the sucrose breaking point (BP) in the PR task nor the elasticity or intensity of demand for sucrose in the DC task. Still, DYN reduced the delay in obtaining sucrose and increased licks during sucrose intake in the PR task, irrespective of the co-administration of orexin-A. In PVN, norBNI increased the delay in obtaining sucrose and reduced licks during sucrose intake in the PR task while increasing elasticity without altering intensity of demand in the DC task. However, subcutaneous norBNI reduced the BP for sucrose and increased the delay in obtaining sucrose in the PR task while reducing the elasticity of demand. Together, these data show different effects of systemic and PVN blockade of KOR on food-seeking, consummatory behaviors, and incentive motivation for sucrose and suggest that KOR activity in PVN is necessary but not sufficient to drive seeking behaviors for palatable food.
Asunto(s)
Dinorfinas , Motivación , Núcleo Hipotalámico Paraventricular , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Dinorfinas/farmacología , Dinorfinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Animales , Masculino , Motivación/efectos de los fármacos , Orexinas , Ratas , Ratas Sprague-Dawley , Naltrexona/farmacología , Naltrexona/análogos & derivados , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/psicología , Sacarosa , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/psicología , Antagonistas de Narcóticos/farmacologíaRESUMEN
The TGFß cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α-like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated GfralCre and conditional GfralCreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating GfralCre -expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non-meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.
Asunto(s)
Reacción de Prevención/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Animales , Peso Corporal , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Masculino , Ratones , Neuronas/efectos de los fármacos , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Long-EvansRESUMEN
In marine environments, exposure to microplastics threaten various organisms. A large portion of MPs may be bioavailable to copepods, and ingesting MPs has been reported to induce various adverse effects, including increased mortality, developmental retardation, and decreased reproduction. Adverse effects of MPs on these important processes of copepods may be induced by the obstructive effects of the ingested MPs on energy acquisition. However, few studies have explored the biological effects of MPs on copepods in terms of energy budgets. Therefore, we analyzed ATP (adenosine triphosphate) levels, enzyme activities, swimming distances, and excretion rates in marine copepods (Tigriopus koreanus) that have ingested polystyrene microplastics. Our results indicate that the ingestion of MPs may prevent adequate acquisition of nourishment and lead the copepods into a vicious circle in the respect to energetic burden. Our study provides biochemical evidence for a reduction in the energy budget of copepods due to MPs ingestion. Further, this study increases our understanding of the risks of microplastics, by providing advanced evidences of their effects on marine primary consumer.
Asunto(s)
Copépodos , Metabolismo Energético , Microplásticos , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Metabolismo Energético/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Natación , Ingestión de Alimentos/efectos de los fármacosRESUMEN
In the last few years, there has been a growing interest in the use of natural feed additives in animal feed. These can be used as replacements for antibiotics, to alter rumen fermentation and increase feed efficiency in ruminants. Therefore, the objective of this study is to evaluate the effects of adding different feed additives in the diet of beef and dairy cattle on their performance, dry matter intake (DMI) and feed efficiency, through a systematic review followed by meta-analysis. The systematic review suggested 43 peer-reviewed publications, according to the pre-established criteria. In beef cattle, the ionophore antibiotics reduced the DMI, improved the feed efficiency without interfering in the average daily gain (ADG). Non-ionophore antibiotics and propolis extract increased the ADG. In dairy cattle, the ionophores, yeast-based additives, and enzyme additives increased the feed efficiency, DMI, and daily milk production (MY), respectively. Essential oil supplementation in beef and dairy cattle had no effect on the feed intake and animal performance. The systematic review and meta-analysis allowed us to conclude that different feed additives have different effects on cattle performance, however, our results suggest that there are a few gaps regarding their effects on animal performance.
Asunto(s)
Alimentación Animal , Bovinos , Animales , Alimentación Animal/análisis , Suplementos Dietéticos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Aditivos Alimentarios/administración & dosificación , Aditivos Alimentarios/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacosRESUMEN
Our previous research identified interleukin-4 (IL-4) as a key regulator of glucose/lipid metabolism, circulatory leptin levels, and insulin action, suggesting its potential as a therapeutic target for obesity and related complications. This study aimed to further elucidate the role of IL-4 in regulating hypothalamic appetite-controlling neuropeptides using leptin dysfunctional Leptin145E/145E mice as the experimental model. IL-4 significantly reduces body weight, food intake, and serum glucose levels. Our data demonstrated that IL-4 exhibits multiple functions in regulating hypothalamic appetite control, including downregulating orexigenic agouti-related peptide and neuropeptide Y levels, promoting expression of anorexigenic proopiomelanocortin, alleviating microenvironmental hypothalamic inflammation, enhancing leptin and insulin pathway, and attenuating insulin resistance. Furthermore, IL-4 promotes uncoupling protein 1 expression of white adipose tissue (WAT), suggesting its role in triggering WAT-beige switch. In summary, this study uncovers novel function of IL-4 in mediating food-intake behaviors and metabolic efficiency by regulating hypothalamic appetite-control and WAT browning activities. These findings support the therapeutic potential of targeting hypothalamic inflammation and reducing adiposity through IL-4 intervention for tackling the pandemic increasing prevalence of obesity and associated metabolic disorders.