Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.288
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(6): 1589-1605.e22, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32841600

RESUMEN

Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLCVGLUT2 neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLCVGLUT2 neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLCVGLUT2 neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLCVGLUT2 neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLCVGLUT2 neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.


Asunto(s)
Regulación del Apetito/fisiología , Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Locus Coeruleus/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología , Análisis de la Célula Individual/métodos , Animales , Apetito/fisiología , Escala de Evaluación de la Conducta , Retroalimentación , Conducta Alimentaria/fisiología , Femenino , Glutamina/metabolismo , Glutamina/fisiología , Homeostasis/fisiología , Hambre/fisiología , Masculino , Ratones , Ratones Noqueados , Motivación/fisiología , Neuronas/efectos de los fármacos , Proteínas Recombinantes , Recompensa , Rombencéfalo/citología , Rombencéfalo/diagnóstico por imagen , Gusto/fisiología , Sed/fisiología
2.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398343

RESUMEN

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/fisiología , Mucosa Intestinal/metabolismo , Caracteres Sexuales , Maduración del Esperma/fisiología , Animales , Ácido Cítrico/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Expresión Génica , Quinasas Janus/metabolismo , Masculino , RNA-Seq , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Azúcares/metabolismo , Testículo/metabolismo
3.
Cell ; 178(1): 44-59.e7, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31104844

RESUMEN

Hypothalamic Agrp neurons regulate food ingestion in adult mice. Whether these neurons are functional before animals start to ingest food is unknown. Here, we studied the functional ontogeny of Agrp neurons during breastfeeding using postnatal day 10 mice. In contrast to adult mice, we show that isolation from the nursing nest, not milk deprivation or ingestion, activated Agrp neurons. Non-nutritive suckling and warm temperatures blunted this effect. Using in vivo fiber photometry, neonatal Agrp neurons showed a rapid increase in activity upon isolation from the nest, an effect rapidly diminished following reunion with littermates. Neonates unable to release GABA from Agrp neurons expressed blunted emission of isolation-induced ultrasonic vocalizations. Chemogenetic overactivation of these neurons further increased emission of these ultrasonic vocalizations, but not milk ingestion. We uncovered important functional properties of hypothalamic Agrp neurons during mouse development, suggesting these neurons facilitate offspring-to-caregiver bonding.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/citología , Neuronas/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Animales Recién Nacidos , Ingestión de Alimentos/fisiología , Conducta Materna/fisiología , Ratones , Ratones Noqueados , Leche , Proteínas Proto-Oncogénicas c-fos/metabolismo , Aislamiento Social , Conducta en la Lactancia/fisiología , Temperatura , Vocalización Animal/fisiología , Ácido gamma-Aminobutírico/metabolismo
4.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Physiol Rev ; 102(2): 689-813, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486393

RESUMEN

During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Animales , Homeostasis/fisiología , Humanos , Transducción de Señal/fisiología
6.
Nature ; 624(7990): 130-137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993711

RESUMEN

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Asunto(s)
Regulación del Apetito , Tronco Encefálico , Ingestión de Alimentos , Retroalimentación Fisiológica , Alimentos , Saciedad , Estómago , Regulación del Apetito/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Ingestión de Alimentos/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Estómago/fisiología , Gusto/fisiología , Factores de Tiempo , Animales , Ratones
7.
Nature ; 606(7915): 785-790, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705806

RESUMEN

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Obesidad , Fenilalanina , Condicionamiento Físico Animal , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Metabolismo Energético , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Fenilalanina/administración & dosificación , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fenilalanina/farmacología , Condicionamiento Físico Animal/fisiología
8.
Nature ; 600(7888): 269-273, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789878

RESUMEN

The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.


Asunto(s)
Mantenimiento del Peso Corporal/genética , Mantenimiento del Peso Corporal/fisiología , Cerebelo/fisiología , Alimentos , Biosíntesis de Proteínas , Genética Inversa , Respuesta de Saciedad/fisiología , Adulto , Animales , Regulación del Apetito/genética , Regulación del Apetito/fisiología , Núcleos Cerebelosos/citología , Núcleos Cerebelosos/fisiología , Cerebelo/citología , Señales (Psicología) , Dopamina/metabolismo , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Femenino , Homeostasis , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Neostriado/metabolismo , Neuronas/fisiología , Obesidad/genética , Filosofía , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652744

RESUMEN

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Elementos de Facilitación Genéticos , Hipotálamo , Proopiomelanocortina , Pez Cebra , Animales , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Ratones , Hipotálamo/metabolismo , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Femenino , Masculino , Ratones Transgénicos , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mamíferos/metabolismo , Mamíferos/genética
10.
Nature ; 587(7834): 455-459, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116314

RESUMEN

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Ingestión de Alimentos/fisiología , Ingestión de Energía/fisiología , Madres , Neuronas/metabolismo , Reproducción/fisiología , Estructuras Animales/citología , Estructuras Animales/inervación , Estructuras Animales/metabolismo , Animales , Regulación del Apetito/fisiología , Femenino , Hiperfagia/metabolismo , Masculino , Neuropéptidos/metabolismo
11.
Nature ; 588(7838): 479-484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177714

RESUMEN

Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.


Asunto(s)
Colesterol/biosíntesis , Ingestión de Alimentos/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Metabolismo/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/deficiencia , Ubiquitinación , Aumento de Peso
12.
Nature ; 581(7807): 194-198, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32404998

RESUMEN

Daily changes in light and food availability are major time cues that influence circadian timing1. However, little is known about the circuits that integrate these time cues to drive a coherent circadian output1-3. Here we investigate whether retinal inputs modulate entrainment to nonphotic cues such as time-restricted feeding. Photic information is relayed to the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and the intergeniculate leaflet (IGL) through intrinsically photosensitive retinal ganglion cells (ipRGCs)4. We show that adult mice that lack ipRGCs from the early postnatal stages have impaired entrainment to time-restricted feeding, whereas ablation of ipRGCs at later stages had no effect. Innervation of ipRGCs at early postnatal stages influences IGL neurons that express neuropeptide Y (NPY) (hereafter, IGLNPY neurons), guiding the assembly of a functional IGLNPY-SCN circuit. Moreover, silencing IGLNPY neurons in adult mice mimicked the deficits that were induced by ablation of ipRGCs in the early postnatal stages, and acute inhibition of IGLNPY terminals in the SCN decreased food-anticipatory activity. Thus, innervation of ipRGCs in the early postnatal period tunes the IGLNPY-SCN circuit to allow entrainment to time-restricted feeding.


Asunto(s)
Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Luz , Vías Nerviosas , Retina/fisiología , Animales , Axones/fisiología , Axones/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Señales (Psicología) , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/efectos de la radiación , Masculino , Ratones , Vías Nerviosas/efectos de la radiación , Neuropéptido Y/metabolismo , Retina/citología , Retina/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
13.
Nature ; 580(7802): 263-268, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269334

RESUMEN

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/fisiología , Intestinos/fisiología , Zinc/metabolismo , Animales , Drosophila melanogaster/genética , Enterocitos/metabolismo , Femenino , Preferencias Alimentarias , Homeostasis , Insectos Vectores , Insulina/metabolismo , Activación del Canal Iónico , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Lisosomas/metabolismo , Masculino , Oocitos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Xenopus
14.
Nature ; 579(7800): 575-580, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32050257

RESUMEN

The intestinal mucosa serves both as a conduit for the uptake of food-derived nutrients and microbiome-derived metabolites, and as a barrier that prevents tissue invasion by microorganisms and tempers inflammatory responses to the myriad contents of the lumen. How the intestine coordinates physiological and immune responses to food consumption to optimize nutrient uptake while maintaining barrier functions remains unclear. Here we show in mice how a gut neuronal signal triggered by food intake is integrated with intestinal antimicrobial and metabolic responses that are controlled by type-3 innate lymphoid cells (ILC3)1-3. Food consumption rapidly activates a population of enteric neurons that express vasoactive intestinal peptide (VIP)4. Projections of VIP-producing neurons (VIPergic neurons) in the lamina propria are in close proximity to clusters of ILC3 that selectively express VIP receptor type 2 (VIPR2; also known as VPAC2). Production of interleukin (IL)-22 by ILC3, which is upregulated by the presence of commensal microorganisms such as segmented filamentous bacteria5-7, is inhibited upon engagement of VIPR2. As a consequence, levels of antimicrobial peptide derived from epithelial cells are reduced but the expression of lipid-binding proteins and transporters is increased8. During food consumption, the activation of VIPergic neurons thus enhances the growth of segmented filamentous bacteria associated with the epithelium, and increases lipid absorption. Our results reveal a feeding- and circadian-regulated dynamic neuroimmune circuit in the intestine that promotes a trade-off between innate immune protection mediated by IL-22 and the efficiency of nutrient absorption. Modulation of this pathway may therefore be effective for enhancing resistance to enteropathogens2,3,9 and for the treatment of metabolic diseases.


Asunto(s)
Ingestión de Alimentos/fisiología , Inmunidad Innata/inmunología , Absorción Intestinal/fisiología , Intestinos/inmunología , Intestinos/fisiología , Linfocitos/inmunología , Neuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Ritmo Circadiano/fisiología , Ingestión de Alimentos/inmunología , Femenino , Interleucinas/biosíntesis , Interleucinas/inmunología , Absorción Intestinal/inmunología , Intestinos/citología , Intestinos/microbiología , Linfocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Periodo Posprandial/fisiología , Receptores CCR6/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Simbiosis , Interleucina-22
15.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38594069

RESUMEN

The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60 d, then administered several mAChR antagonists 30 min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24 h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.


Asunto(s)
Dieta Alta en Grasa , Endocannabinoides , Glicéridos , Ratones Endogámicos C57BL , Obesidad , Transducción de Señal , Transmisión Sináptica , Animales , Endocannabinoides/metabolismo , Masculino , Obesidad/metabolismo , Ratones , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/fisiología , Glicéridos/metabolismo , Ácidos Araquidónicos/metabolismo , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/metabolismo , Eje Cerebro-Intestino/fisiología
16.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38531632

RESUMEN

BMAL2 (ARNTL2) is a paralog of BMAL1 that can form heterodimers with the other circadian factors CLOCK and NPAS2 to activate transcription of clock and clock-controlled genes. To assess a possible role of Bmal2 in the circadian regulation of metabolism, we investigated daily variations of energy metabolism, feeding behavior, and locomotor behavior, as well as ability to anticipate restricted food access in male mice knock-out for Bmal2 (B2KO). While their amount of food intake and locomotor activity were normal compared with wild-type mice, B2KO mice displayed increased adiposity (1.5-fold higher) and fasted hyperinsulinemia (fourfold higher) and tended to have lower energy expenditure at night. Impairment of the master clock in the suprachiasmatic nuclei was evidenced by the shorter free-running period (-14 min/cycle) of B2KO mice compared with wild-type controls and by a loss of daily rhythmicity in expression of intracellular metabolic regulators (e.g., Lipoprotein lipase and Uncoupling protein 2). The circadian window of eating was longer in B2KO mice. The circadian patterns of food intake and meal numbers were bimodal in control mice but not in B2KO mice. In response to restricted feeding, food-anticipatory activity was almost prevented in B2KO mice, suggesting altered food clock that controls anticipation of food availability. In the mediobasal hypothalamus of B2KO mice, expression of genes coding orexigenic neuropeptides (including Neuropeptide y and Agouti-Related Peptide) was downregulated, while Lipoprotein lipase expression lost its rhythmicity. Together, these data highlight that BMAL2 has major impacts on brain regulation of metabolic rhythms, sleep-wake cycle, and food anticipation.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Metabolismo Energético , Conducta Alimentaria , Hipotálamo , Ratones Noqueados , Animales , Ratones , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Masculino , Conducta Alimentaria/fisiología , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Actividad Motora/genética , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología
17.
Nature ; 568(7750): 93-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918407

RESUMEN

Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption1,2. By contrast, oral sodium detection rapidly quenches sodium appetite3,4, suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste-but not sodium ingestion per se-is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Ingestión de Alimentos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sodio/farmacología , Gusto/efectos de los fármacos , Gusto/fisiología , Administración Oral , Animales , Regulación del Apetito/genética , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Encefalinas/metabolismo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Homeostasis/fisiología , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Masculino , Ratones , Motivación/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Sodio/administración & dosificación , Gusto/genética
18.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862177

RESUMEN

Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.


Asunto(s)
Drosophila melanogaster , Cuerpos Pedunculados , Plasticidad Neuronal , Animales , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/fisiología , Plasticidad Neuronal/fisiología , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Ingestión de Alimentos/fisiología , Optogenética , Aprendizaje por Asociación/fisiología , Olfato/fisiología , Percepción Olfatoria/fisiología , Recompensa , Animales Modificados Genéticamente
19.
J Neurosci ; 43(23): 4251-4261, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127362

RESUMEN

The gustatory cortex (GC) region of the insular cortex processes taste information in manners important for taste-guided behaviors, including food intake itself. In addition to oral gustatory stimuli, GC activity is also influenced by physiological states including hunger. The specific cell types and molecular mechanisms that provide the GC with such abilities are unclear. Glucagon-like peptide 1 (GLP-1) is produced by neurons in the brain, where it can act on GLP-1 receptor-expressing (GLP-1R+) neurons found in several brain regions. In these brain regions, GLP-1R agonism suppresses homeostatic food intake and dampens the hedonic value of food. Here, we report in mice of both sexes that cells within the GC express Glp1r mRNA and further, by ex vivo brain slice recordings, that GC GLP-1R+ neurons are depolarized by the selective GLP-1R agonist, exendin-4. Next we found that chemogenetic stimulation of GLP-1R+ neurons, and also pharmacological stimulation of GC-GLP-1Rs themselves, both reduced homeostatic food intake. When mice were chronically maintained on diets with specific fat contents and then later offered foods with new fat contents, we also found that GLP-1R agonism reduced food intake toward foods with differing fat contents, indicating that GC GLP-1R influences may depend on palatability of the food. Together, these results provide evidence for a specific cell population in the GC that may hold roles in both homeostatic and hedonic food intake.SIGNIFICANCE STATEMENT The present study demonstrates that a population of neurons in the GC region of the insular cortex expresses receptors for GLP-1Rs, these neurons are depolarized by agonism of GLP-1Rs, and GC GLP-1Rs can influence food intake on their activation, including in manners depending on food palatability. This work is significant by adding to our understanding of the brain systems that mediate ingestive behavior, which holds implications for metabolic diseases.


Asunto(s)
Ingestión de Alimentos , Receptor del Péptido 1 Similar al Glucagón , Ratas , Masculino , Femenino , Ratones , Animales , Ingestión de Alimentos/fisiología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Corteza Insular , Ratas Sprague-Dawley , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA