Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34133941

RESUMEN

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Asunto(s)
Adenoviridae/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Femenino , Inmunogenicidad Vacunal/inmunología , Memoria Inmunológica/inmunología , Macaca mulatta , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos
2.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491384

RESUMEN

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Antivirales/inmunología , Microbioma Gastrointestinal/fisiología , Inmunidad/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Formación de Anticuerpos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Masculino , Adulto Joven
3.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556879

RESUMEN

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Virales/inmunología , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Expresión Génica/inmunología , Vectores Genéticos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunización/métodos , Primates/inmunología , Primates/virología , Vacunación/métodos
4.
N Engl J Med ; 388(7): 609-620, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36791161

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS: Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS: In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Anciano , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Método Doble Ciego , Infecciones por Virus Sincitial Respiratorio/sangre , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Eficacia de las Vacunas , Inmunogenicidad Vacunal/inmunología , Resultado del Tratamiento
5.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260859

RESUMEN

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Inmunogenicidad Vacunal , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Inmunogenicidad Vacunal/inmunología , Eficacia de las Vacunas , Resultado del Tratamiento , Adolescente , Adulto
6.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36112399

RESUMEN

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Vacunas Combinadas , Vacunas de ARNm , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2 , Vacunas Combinadas/inmunología , Vacunas Combinadas/uso terapéutico , Vacunas de ARNm/inmunología , Vacunas de ARNm/uso terapéutico
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110410

RESUMEN

Despite more than 300,000 rVSVΔG-ZEBOV-glycoprotein (GP) vaccine doses having been administered during Ebola virus disease (EVD) outbreaks in the Democratic Republic of the Congo (DRC) between 2018 and 2020, seroepidemiologic studies of vaccinated Congolese populations are lacking. This study examines the antibody response at 21 d and 6 mo postvaccination after single-dose rVSVΔG-ZEBOV-GP vaccination among EVD-exposed and potentially exposed populations in the DRC. We conducted a longitudinal cohort study of 608 rVSVΔG-ZEBOV-GP-vaccinated individuals during an EVD outbreak in North Kivu Province, DRC. Participants provided questionnaires and blood samples at three study visits (day 0, visit 1; day 21, visit 2; and month 6, visit 3). Anti-GP immunoglobulin G (IgG) antibody titers were measured in serum by the Filovirus Animal Nonclinical Group anti-Ebola virus GP IgG enzyme-linked immunosorbent assay. Antibody response was defined as an antibody titer that had increased fourfold from visit 1 to visit 2 and was above four times the lower limit of quantification at visit 2; antibody persistence was defined as a similar increase from visit 1 to visit 3. We then examined demographics for associations with follow-up antibody titers using generalized linear mixed models. A majority of the sample, 87.2%, had an antibody response at visit 2, and 95.6% demonstrated antibody persistence at visit 3. Being female and of young age was predictive of a higher antibody titer postvaccination. Antibody response and persistence after Ebola vaccination was robust in this cohort, confirming findings from outside of the DRC.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunogenicidad Vacunal/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Niño , República Democrática del Congo , Brotes de Enfermedades/prevención & control , Femenino , Glicoproteínas/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología , Adulto Joven
8.
Clin Exp Immunol ; 217(1): 99-108, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38546123

RESUMEN

Oral rotavirus vaccines demonstrate diminished immunogenicity in low-income settings where human cytomegalovirus infection is acquired early in childhood and modulates immunity. We hypothesized that human cytomegalovirus infection around the time of vaccination may influence immunogenicity. We measured plasma human cytomegalovirus-specific immunoglobulin M antibodies in rotavirus vaccinated infants from 6 weeks to 12 months old and compared rotavirus immunoglobulin A antibody titers between human cytomegalovirus seropositive and seronegative infants. There was no evidence of an association between human cytomegalovirus serostatus at 9 months and rotavirus-specific antibody titers at 12 months (geometric mean ratio 1.01, 95% CI: 0.70, 1.45; P = 0.976) or fold-increase in RV-IgA titer between 9 and 12 months (risk ratio 0.999, 95%CI: 0.66, 1.52; P = 0.995) overall. However, HIV-exposed-uninfected infants who were seropositive for human cytomegalovirus at 9 months old had a 63% reduction in rotavirus antibody geometric mean titers at 12 months compared to HIV-exposed-uninfected infants who were seronegative for human cytomegalovirus (geometric mean ratio 0.37, 95% CI: 0.17, 0.77; P = 0.008). While the broader implications of human cytomegalovirus infections on oral rotavirus vaccine response might be limited in the general infant population, the potential impact in the HIV-exposed-uninfected infants cannot be overlooked. This study highlights the complexity of immunological responses and the need for targeted interventions to ensure oral rotavirus vaccine efficacy, especially in vulnerable subpopulations.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Citomegalovirus , Citomegalovirus , Infecciones por VIH , Infecciones por Rotavirus , Vacunas contra Rotavirus , Humanos , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Citomegalovirus/inmunología , Lactante , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Infecciones por VIH/inmunología , Masculino , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Femenino , Inmunogenicidad Vacunal/inmunología , Rotavirus/inmunología , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Administración Oral , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Vacunación
9.
PLoS Pathog ; 18(1): e1010243, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100312

RESUMEN

To assess the response to vaccination, quantity (concentration) and quality (avidity) of neutralizing antibodies are the most important parameters. Specifically, an increase in avidity indicates germinal center formation, which is required for establishing long-term protection. For influenza, the classical hemagglutination inhibition (HI) assay, however, quantifies a combination of both, and to separately determine avidity requires high experimental effort. We developed from first principles a biophysical model of hemagglutination inhibition to infer IgG antibody avidities from measured HI titers and IgG concentrations. The model accurately describes the relationship between neutralizing antibody concentration/avidity and HI titer, and explains quantitative aspects of the HI assay, such as robustness to pipetting errors and detection limit. We applied our model to infer avidities against the pandemic 2009 H1N1 influenza virus in vaccinated patients (n = 45) after hematopoietic stem cell transplantation (HSCT) and validated our results with independent avidity measurements using an enzyme-linked immunosorbent assay with urea elution. Avidities inferred by the model correlated with experimentally determined avidities (ρ = 0.54, 95% CI = [0.31, 0.70], P < 10-4). The model predicted that increases in IgG concentration mainly contribute to the observed HI titer increases in HSCT patients and that immunosuppressive treatment is associated with lower baseline avidities. Since our approach requires only easy-to-establish measurements as input, we anticipate that it will help to disentangle causes for poor vaccination outcomes also in larger patient populations. This study demonstrates that biophysical modelling can provide quantitative insights into agglutination assays and complement experimental measurements to refine antibody response analyses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/inmunología , Inmunogenicidad Vacunal/inmunología , Gripe Humana/inmunología , Modelos Inmunológicos , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Subtipo H1N1 del Virus de la Influenza A , Pruebas de Neutralización
10.
PLoS Pathog ; 18(1): e1009903, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061851

RESUMEN

It has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees' ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra el Dengue/inmunología , Inmunogenicidad Vacunal/inmunología , Células T Auxiliares Foliculares/inmunología , Anticuerpos Neutralizantes/inmunología , Dengue/prevención & control , Femenino , Humanos , Masculino , Vacunas Combinadas/inmunología
11.
BMC Neurol ; 24(1): 291, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164636

RESUMEN

BACKGROUND: To investigate the safety (adverse events [AEs] and post-vaccination multiple sclerosis [MS] activity within 6 weeks), clinical efficacy (protection against coronavirus disease 2019 [COVID-19]), and vaccine-induced humoral immunogenicity (SARS-CoV-2 neutralizing antibody, anti-nucleocapsid IgG, and anti-spike IgG) of the Sinopharm (BBIBP-CorV) vaccine among people with MS (PwMS) receiving different disease-modifying therapies (DMTs). METHODS: This prospective cohort study was conducted between November 2021 and May 2022. PwMS were followed for six months after the 2nd dose of vaccination. Antibody responses were measured 2-16 weeks after the 2nd dose injection. Multivariate logistic regression was employed to assess the impact of each DMT on dichotomous antibody responses, adjusting for age, sex, MS phenotype, expanded disability status scale, disease duration, and vaccination-antibody titration interval. RESULTS: Among the 261 screened PwMS, 209 (aged 38.23 ± 9.73 years, female: 70.8%; relapsing-remitting MS: 80.4%) were included. The frequencies of experiencing non-serious AEs and post-vaccination MS activity were 66.0% and 4.8%, respectively. Breakthrough COVID-19 infection was observed in 14.8% of the PwMS. A subcohort of 125 PwMS was assessed for antibody responses. Positive neutralizing antibodies, anti-nucleocapsid IgG, and anti-spike IgG were detected in 36.8%, 35.2%, and 52.0% of the PwMS, respectively. Multivariate regression indicated a 96% (OR: 0.04 [95% CI: 0.00, 0.51], P = 0.013), 93% (OR: 0.07 [0.01, 0.64], P = 0.019), and 89% (OR: 0.11 [0.01, 0.96], P = 0.045) reduced odds of positive neutralizing antibody, anti-nucleocapsid IgG, and anti-spike IgG, respectively, among fingolimod-receivers. Additionally, anti-CD20s-receivers had 88% (OR: 0.12 [0.02, 0.85], P = 0.034) lower odds of being positive for anti-nucleocapsid IgG. CONCLUSIONS: BBIBP-CorV appeared to be well tolerated in PwMS, with promising clinical efficacy. However, a suboptimal humoral response was observed in PwMS receiving fingolimod and anti-CD20s. Future research should investigate the relationship between humoral responses and the frequency and severity of COVID-19 infection across various DMTs.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Esclerosis Múltiple , Vacunas de Productos Inactivados , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios de Cohortes , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/epidemiología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Inmunogenicidad Vacunal/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Estudios Prospectivos , SARS-CoV-2/inmunología , Resultado del Tratamiento , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología
12.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875594

RESUMEN

Hepatitis B virus (HBV) vaccines are composed of surface antigen HBsAg that spontaneously assembles into subviral particles. Factors that impede its humoral immunity in 5% to 10% of vaccinees remain elusive. Here, we showed that the low-level interleukin-1 receptor antagonist (IL-1Ra) can predict antibody protection both in mice and humans. Mechanistically, murine IL-1Ra-inhibited T follicular helper (Tfh) cell expansion and subsequent germinal center (GC)-dependent humoral immunity, resulting in significantly weakened protection against the HBV challenge. Compared to soluble antigens, HBsAg particle antigen displayed a unique capture/uptake and innate immune activation, including IL-1Ra expression, preferably of medullary sinus macrophages. In humans, a unique polymorphism in the RelA/p65 binding site of IL-1Ra enhancer associated IL-1Ra levels with ethnicity-dependent vaccination outcome. Therefore, the differential IL-1Ra response to particle antigens probably creates a suppressive milieu for Tfh/GC development, and neutralization of IL-1Ra would resurrect antibody response in HBV vaccine nonresponders.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Células T Auxiliares Foliculares/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Humanos , Inmunidad Humoral/inmunología , Inmunogenicidad Vacunal/fisiología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Células T Auxiliares Foliculares/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodos
13.
J Virol ; 96(7): e0220121, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35266806

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of children, the elderly, and immunocompromised individuals. Currently, there are no FDA-approved RSV vaccines. The RSV G glycoprotein is used for viral attachment to host cells and impairment of host immunity by interacting with the human chemokine receptor CX3CR1. Antibodies that disrupt this interaction are protective against infection and disease. Nevertheless, development of an RSV G vaccine antigen has been hindered by its low immunogenicity and safety concerns. A previous study described three engineered RSV G proteins containing single-point mutations that induce higher levels of IgG antibodies and have improved safety profiles compared to wild-type RSV G (H. C. Bergeron, J. Murray, A. M. Nuñez Castrejon, et al., Viruses 13:352, 2021, https://doi.org/10.3390/v13020352). However, it is unclear if the mutations affect RSV G protein folding and display of its conformational epitopes. In this study, we show that the RSV G S177Q protein retains high-affinity binding to protective human and mouse monoclonal antibodies and has equal reactivity as wild-type RSV G protein to human reference immunoglobulin to RSV. Additionally, we determined the high-resolution crystal structure of RSV G S177Q protein in complex with the anti-RSV G antibody 3G12, further validating its antigenic structure. These studies show for the first time that an engineered RSV G protein with increased immunogenicity and safety retains conformational epitopes to high-affinity protective antibodies, supporting its further development as an RSV vaccine immunogen. IMPORTANCE Respiratory syncytial virus (RSV) causes severe lower respiratory diseases of children, the elderly, and immunocompromised populations. There currently are no FDA-approved RSV vaccines. Most vaccine development efforts have focused on the RSV F protein, and the field has generally overlooked the receptor-binding antigen RSV G due to its poor immunogenicity and safety concerns. However, single-point mutant RSV G proteins have been previously identified that have increased immunogenicity and safety. In this study, we investigate the antibody reactivities of three known RSV G mutant proteins. We show that one mutant RSV G protein retains high-affinity binding to protective monoclonal antibodies, is equally recognized by anti-RSV antibodies in human sera, and forms the same three-dimensional structure as the wild-type RSV G protein. Our study validates the structure-guided design of the RSV G protein as an RSV vaccine antigen.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Antígenos Virales/genética , Antígenos Virales/inmunología , Epítopos/genética , Epítopos/inmunología , Inmunogenicidad Vacunal/genética , Inmunogenicidad Vacunal/inmunología , Ratones , Mutación , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología
14.
PLoS Biol ; 18(12): e3001024, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33362243

RESUMEN

Zoonotic avian influenza viruses pose severe health threats to humans. Of several viral subtypes reported, the low pathogenic avian influenza H7N9 virus has since February 2013 caused more than 1,500 cases of human infection with an almost 40% case-fatality rate. Vaccination of poultry appears to reduce human infections. However, the emergence of highly pathogenic strains has increased concerns about H7N9 pandemics. To develop an efficacious H7N9 human vaccine, we designed vaccine viruses by changing the patterns of N-linked glycosylation (NLG) on the viral hemagglutinin (HA) protein based on evolutionary patterns of H7 HA NLG changes. Notably, a virus in which 2 NLG modifications were added to HA showed higher growth rates in cell culture and elicited more cross-reactive antibodies than did other vaccine viruses with no change in the viral antigenicity. Developed into an inactivated vaccine formulation, the vaccine virus with 2 HA NLG additions exhibited much better protective efficacy against lethal viral challenge in mice than did a vaccine candidate with wild-type (WT) HA by reducing viral replication in the lungs. In a ferret model, the 2 NLG-added vaccine viruses also induced hemagglutination-inhibiting antibodies and significantly suppressed viral replication in the upper and lower respiratory tracts compared with the WT HA vaccines. In a mode of action study, the HA NLG modification appeared to increase HA protein contents incorporated into viral particles, which would be successfully translated to improve vaccine efficacy. These results suggest the strong potential of HA NLG modifications in designing avian influenza vaccines.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/biosíntesis , Células A549 , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Chlorocebus aethiops , Protección Cruzada/inmunología , Reacciones Cruzadas , Hurones/inmunología , Hurones/metabolismo , Glicosilación , Cobayas , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Inmunogenicidad Vacunal/inmunología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/farmacología , Gripe Humana/inmunología , Ratones , Vacunación/métodos , Células Vero
15.
J Immunol ; 207(2): 735-744, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34244296

RESUMEN

Characterization of germinal center B and T cell responses yields critical insights into vaccine immunogenicity. Nonhuman primates are a key preclinical animal model for human vaccine development, allowing both lymph node (LN) and circulating immune responses to be longitudinally sampled for correlates of vaccine efficacy. However, patterns of vaccine Ag drainage via the lymphatics after i.m. immunization can be stochastic, driving uneven deposition between lymphoid sites and between individual LN within larger clusters. To improve the accurate isolation of Ag-exposed LN during biopsies and necropsies, we developed and validated a method for coformulating candidate vaccines with tattoo ink in both mice and pigtail macaques. This method allowed for direct visual identification of vaccine-draining LN and evaluation of relevant Ag-specific B and T cell responses by flow cytometry. This approach is a significant advancement in improving the assessment of vaccine-induced immunity in highly relevant nonhuman primate models.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Ganglios Linfáticos/inmunología , Vacunas/inmunología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Células Cultivadas , Femenino , Centro Germinal/inmunología , Humanos , Inmunización/métodos , Tinta , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Tatuaje/métodos , Vacunación/métodos
16.
Clin Immunol ; 234: 108897, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848357

RESUMEN

Rituximab (RTX), an important therapeutic option for patients with rheumatic diseases, has been shown to reduce immune responses to various vaccines. We asked whether following SARS-CoV-2 vaccination, response rates in RTX treated patients are reduced and whether specific patient characteristics influence the responses. We recruited patients on chronic RTX therapy undergoing anti-SARS-CoV2 vaccination and measured the post-vaccination anti-spike IgG antibody levels. The median time from pre-vaccination RTX infusion to vaccination and from vaccination to the post-vaccination RTX infusion was 20.5 weeks and 7.2 weeks respectively. Only 36.5% of patients developed measurable titers of IgG anti-SARS-CoV-2 spike antibody after vaccination. Hypogammaglobulinemia (IgG and/or IgM) but not timing of vaccination, B cell numbers, or concomitant immune suppressive medications, correlated with sero-negativity (p = 0.004). Our results underscore the fact that even after B cell reconstitution, RTX induced chronic hypogammaglobulinemia significantly impairs the ability of the immune system to respond to SARS-CoV-2 vaccination.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunogenicidad Vacunal/inmunología , Enfermedades Reumáticas/tratamiento farmacológico , Rituximab/uso terapéutico , SARS-CoV-2/inmunología , Agammaglobulinemia/inmunología , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Enfermedades Reumáticas/inmunología , Vacunación/métodos
17.
Lancet ; 398(10304): 981-990, 2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480858

RESUMEN

BACKGROUND: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44-45 weeks) between the first and second dose, and response to a third dose as a booster given 28-38 weeks after the second dose. METHODS: In this substudy, volunteers aged 18-55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44-45 weeks after first dose) or a third dose of the vaccine (28-38 weeks after second dose). Data from volunteers aged 18-55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. FINDINGS: Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8-12 weeks: 267 [83%] of 321; 15-25 weeks: 24 [7%]; or 44-45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8-12 weeks: 115 [44%] of 261; 15-25 weeks: 116 [44%]; and 44-45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44-45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83-91·08] vs 1·75 EUs [1·60-1·93]). 32 participants received a late second dose of vaccine 44-45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525-1764] with an 8-12 week interval; 1860 EUs [917-4934] with a 15-25 week interval; and 3738 EUs [1824-6625] with a 44-45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047-6420]) than 28 days after a second dose (median 1792 EUs [IQR 899-4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127-389] immediately before the third dose to 399 SFUs per milion PBMCs [314-662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. INTERPRETATION: An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. FUNDING: UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Inmunogenicidad Vacunal/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Vacunación , Adulto , ChAdOx1 nCoV-19 , Femenino , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Factores de Tiempo , Reino Unido
18.
J Clin Immunol ; 42(2): 240-252, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787773

RESUMEN

Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and/or a defective antibody response to T-dependent and T-independent antigens. CVID response to immunization depends on the antigen type, the vaccine mechanism, and the specific patient immune defect. In CVID patients, humoral and cellular responses to the currently used COVID-19 vaccines remain unexplored. Eighteen CVID subjects receiving 2-dose anti-SARS-CoV-2 vaccines were prospectively studied. S1-antibodies and S1-specific IFN-γ T cell response were determined by ELISA and FluoroSpot, respectively. The immune response was measured before the administration and after each dose of the vaccine, and it was compared to the response of 50 healthy controls (HC). The development of humoral and cellular responses was slower in CVID patients compared with HC. After completing vaccination, 83% of CVID patients had S1-specific antibodies and 83% had S1-specific T cells compared with 100% and 98% of HC (p = 0.014 and p = 0.062, respectively), but neutralizing antibodies were detected only in 50% of the patients. The strength of both humoral and cellular responses was significantly lower in CVID compared with HC, after the first and second doses of the vaccine. Absent or discordant humoral and cellular responses were associated with previous history of autoimmunity and/or lymphoproliferation. Among the three patients lacking humoral response, two had received recent therapy with anti-B cell antibodies. Further studies are needed to understand if the response to COVID-19 vaccination in CVID patients is protective enough. The 2-dose vaccine schedule and possibly a third dose might be especially necessary to achieve full immune response in these patients.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunodeficiencia Variable Común/inmunología , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunización/métodos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus , Linfocitos T/inmunología , Vacunación/métodos , Adulto Joven
19.
Lancet ; 398(10295): 121-130, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181880

RESUMEN

BACKGROUND: To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). METHODS: We did a phase 2, open-label, randomised, controlled trial on adults aged 18-60 years, vaccinated with a single dose of ChAdOx1-S 8-12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739), and is ongoing. FINDINGS: Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84-85·33) at baseline to 7756·68 BAU/mL (7371·53-8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69-112·99) to 3684·87 BAU/mL (3429·87-3958·83). The interventional:control ratio was 77·69 (95% CI 59·57-101·32) for RBD protein and 36·41 (29·31-45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. INTERPRETATION: BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. FUNDING: Instituto de Salud Carlos III. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , Inmunogenicidad Vacunal/inmunología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Adolescente , Adulto , Vacuna BNT162 , COVID-19/epidemiología , ChAdOx1 nCoV-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , España/epidemiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
20.
PLoS Pathog ; 16(11): e1008943, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137810

RESUMEN

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Asunto(s)
Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Inmunogenicidad Vacunal/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Bovinos , Cristalografía por Rayos X , Humanos , Inmunización , Modelos Estructurales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA