Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 8981-8990, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513269

RESUMEN

The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/química , Bacterias Gramnegativas/metabolismo , Kanamicina Quinasa/química , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Péptidos
2.
Antonie Van Leeuwenhoek ; 116(6): 541-555, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029880

RESUMEN

The novel bacterial strain Marseille-P4005T was isolated from the stool sample of a healthy donor. It is a Gram-stain negative, non-motile, non-spore-forming rod. It grew optimally at 37 °C and at pH 7.0 on 5% sheep blood-enriched Columbia agar after preincubation in a blood-culture bottle supplemented with rumen and blood. This strain does not ferment monosaccharides (except D-tagatose), disaccharides, or polymeric carbohydrates. The major cellular fatty acids were hexadecenoic (24.6%), octadecanoic (22.8%), and tetradecanoic (20.1%) acids. Next-generation sequencing revealed a genome size of 3.2 Mbp with a 56.4 mol% G + C. Phylogenetic analysis based on the 16S rRNA gene highlighted Agathobaculum desmolans strain ATCC 43058T as the closest related strain. The OrthoANI, AAI, and digital DNA-DNA hybridization values were below the critical thresholds of 95%, 95-96%, and 70%, respectively, to define a novel bacterial species. Antibiotic resistance genes APH(3')-IIIa, erm(B), and tet(W) were detected with high identity percentages of 100%, 98.78%, and 97.18% for each gene, respectively. The APH(3')-IIIa gene confers resistance to amikacin, erm(B) gene confers resistance to erythromycin, lincomycin, and clindamycin, while tet(W) gene confers resistance to doxycycline and tetracycline. Based on KEGG BlastKOALA analyses, the annotation results showed that our strain could use glucose to produce L-lactate and pyruvate but not acetate or ethanol. Also, strain Marseille-P4005T was predicted to use phenylalanine to produce indole, a major intercellular signal molecule within the gut microbial ecosystem. Through having a gene coding for tryptophan synthase beta chain (trpB), strain Marseille-P4005T could produce L-tryptophan (an essential amino acid) from indole. Strain Marseille-P4005T showed its highest prevalence in the human gut (34.19%), followed by the reproductive system (17.98%), according to a query carried out on the Integrated Microbial NGS (IMNGS) platform. Based on phylogenetic, phenotypic, and genomic analyses, we classify strain Marseille-P4005T (= CSUR P4005 = CECT 9669), a novel species within the genus Agathobaculum, for which the name of Agathobaculum massiliense sp. nov. is proposed.


Asunto(s)
Lactobacillales , Triptófano , Humanos , Triptófano/genética , Filogenia , ARN Ribosómico 16S/genética , Ecosistema , Kanamicina Quinasa/genética , Composición de Base , Genómica , Bacterias/genética , Lactobacillales/genética , Ácidos Grasos/química , Indoles , ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
3.
Microb Pathog ; 171: 105715, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35973648

RESUMEN

In this study, we evaluated the antimicrobial susceptibility, the presence of gene-encoding virulence factors and CRISPR systems, as well as the ability to produce lytic enzymes among clinical E. faecalis and E. faecium isolates (n = 44). All enterococci isolates showed phenotypes of multidrug resistance. E. faecalis and E. faecium isolates exhibited high-level aminoglycoside resistance phenotype, several of them harboring the aac(6')Ie-aph(2″)Ia and aph(3')-IIIa genes. The gene vanA was the most frequent among vancomycin-resistant E. faecium. High prevalence of the virulence genes esp and efaA were observed; hyl gene was more associated with E. faecium, while ace and efaA genes were more frequently detected in E. faecalis. Caseinase activity was frequently detected among the isolates. Gelatinase and DNAse activities predominated among E. faecalis, while hemolytic capability was frequent among E. faecium isolates. Twenty-nine isolates showed at least one CRISPR system investigated. Several enterococci isolates harbored the aac(6')-Ie-aph(2″)-Ia or aph(3')-IIIa genes and a CRISPR loci. CRISPR loci were positively correlated to efaA and gelE genes, and gelatinase and DNAse activities, while CRISPR loci absence was related to hyl gene presence. These results show that clinical isolates of E. faecalis and E. faecium harboring virulence genes show the concomitant presence of CRISPR loci and antibiotic resistance determinants.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Aminoglicósidos , Antibacterianos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas/genética , Farmacorresistencia Bacteriana/genética , Enterococcus/genética , Enterococcus faecalis , Gelatinasas , Infecciones por Bacterias Grampositivas/epidemiología , Humanos , Kanamicina Quinasa/genética , Pruebas de Sensibilidad Microbiana , Vancomicina , Virulencia/genética , Factores de Virulencia/genética
4.
J Antimicrob Chemother ; 76(11): 2787-2794, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34329431

RESUMEN

OBJECTIVES: To describe a novel chromosomal aminoglycoside phosphotransferase named APH(3')-IId identified in an MDR Brucella intermedia ZJ499 isolate from a cancer patient. METHODS: Species identity was determined by PCR and MALDI-TOF MS analysis. WGS was performed to determine the genetic elements conferring antimicrobial resistance. Gene cloning, transcriptional analysis and targeted gene deletion, as well as protein purification and kinetic analysis, were performed to investigate the mechanism of resistance. RESULTS: APH(3')-IId consists of 266 amino acids and shares the highest identity (48.25%) with the previously known APH(3')-IIb. Expression of aph(3')-IId in Escherichia coli decreased susceptibility to kanamycin, neomycin, paromomycin and ribostamycin. The aph(3')-IId gene in ZJ499 was transcriptionally active under laboratory conditions and the relative abundance of this transcript was unaffected by treatment with the above four antibiotics. However, deletion of aph(3')-IId in ZJ499 results in decreased MICs of these drugs. The purified APH(3')-IId showed phosphotransferase activity against kanamycin, neomycin, paromomycin and ribostamycin, with catalytic efficiencies (kcat/Km) ranging from ∼105 to 107 M-1 s-1. Genetic environment and comparative genomic analyses suggested that aph(3')-IId is probably a ubiquitous gene in Brucella, with no mobile genetic elements detected in its surrounding region. CONCLUSIONS: APH(3')-IId is a novel chromosomal aminoglycoside phosphotransferase and plays an important role in the resistance of B. intermedia ZJ499 to kanamycin, neomycin, paromomycin and ribostamycin. To the best of our knowledge, APH(3')-IId represents the fourth characterized example of an APH(3')-II enzyme.


Asunto(s)
Aminoglicósidos , Brucella , Farmacorresistencia Bacteriana Múltiple , Kanamicina Quinasa , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Brucella/efectos de los fármacos , Brucella/enzimología , Humanos , Kanamicina/farmacología , Kanamicina Quinasa/genética , Cinética
5.
Curr Genet ; 66(4): 835-847, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152733

RESUMEN

Neurospora crassa is an excellent model fungus for studies on molecular genetics, biochemistry, physiology, and molecular cell biology. Along with the rapid progress of Neurospora research, new tools facilitating more efficient and accurate genetic analysis are in high demand. Here, we tested whether the dominant selective makers widely used in yeasts are applicable in N. crassa. Among them, we found that the strains of N. crassa are sensitive to the aminoglycoside antibiotics, G418 and nourseothricin. 1000 µg/mL of G418 or 50 µg/mL of nourseothricin is sufficient to inhibit Neurospora growth completely. When the neomycin phosphotransferase gene (neo) used in mammalian cells is expressed, N. crassa shows potent resistance to G418. This establishes G418-resistant marker as a dominant selectable marker to use in N. crassa. Similarly, when the nourseothricin acetyltransferase gene (nat) from Streptomyces noursei is induced by qa-2 promoter in the presence of quinic acid (QA), N. crassa shows potent resistance to nourseothricin. When nat is constitutively expressed by full-length or truncated versions of the promoter from the N. crassa cfp gene (NCU02193), or by the trpC promoter of Aspergillus nidulans, the growth of N. crassa in the presence of nourseothricin is proportional to the expression levels of Nat. Finally, these two markers are used to knock-out wc-2 or al-1 gene from the N. crassa genome. The successful development of these two markers in this study expands the toolbox for N. crassa and very likely for other filamentous fungi as well.


Asunto(s)
Farmacorresistencia Fúngica/genética , Marcadores Genéticos , Neurospora crassa/efectos de los fármacos , Neurospora crassa/genética , Acetiltransferasas/genética , Antibacterianos/farmacología , Elementos Transponibles de ADN , Farmacorresistencia Fúngica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Dominantes , Gentamicinas/farmacología , Kanamicina Quinasa/genética , Microorganismos Modificados Genéticamente , Regiones Promotoras Genéticas , Ácido Quínico/farmacología , Estreptotricinas/farmacología
6.
Mol Biol Rep ; 47(3): 1703-1712, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989429

RESUMEN

The aim of this study was isolation and identification of the high-level aminoglycoside-resistant (HLAR) enterococci in raw milk and dairy products and to analyze their antibiotic resistance and the presence of aminoglycoside-modifying enzyme (AME) genes. A total of 59 HLAR enterococci were isolated from raw milk and traditional cheese samples. Thirty-nine of the 59 HLAR enterococci were isolated on streptomycin-containing agar medium, while the other 20 HLAR strains were isolated on gentamicin containing agar medium. The 59 HLAR enterococci were identified as 26 E. faecalis (44.07%), 18 E. faecium (30.51%), 13 E. durans (22.03%), and two E. gallinarum (3.39%) by species-specific PCR. Disk diffusion tests showed that teicoplanin were the most effective antibiotics used in this study, while 89.83% of isolates were found to be resistant to tetracycline. High rates of multiple antibiotic resistance were detected in HLAR isolates. Minimum inhibitory concentration (MIC) values of HLAR enterococci against streptomycin and gentamicin were found in the range of 64 to > 4096 µg/mL. Forty-seven (79.66%) of the 59 HLAR enterococci were found to be both high-level streptomycin-resistant (HLSR) and high-level gentamicin-resistant (HLGR) by MIC tests. However, no correlation was found between the results of the disk diffusion and MIC tests for gentamicin and streptomycin in some HLAR strains. The aph(3')-IIIa (94.92%) was found to be most prevalent AME gene followed by ant(4')-Ia (45.76%), ant(6')-Ia (20.34%) and aph(2'')-Ic (10.17%). None of the isolates contained the aac(6')-Ie-aph(2'')-Ia, aph(2'')-Ib or aph(2'')-Id genes. None of the AME-encoding genes were identified in E. durans RG20.1, E. faecalis RG22.4, or RG26.1. In conclusion, HLAR enterococci strains isolated in this study may act as reservoirs in the dissemination of antibiotic resistance genes.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Queso/microbiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enterococcus/genética , Leche/microbiología , Animales , Proteínas Bacterianas/metabolismo , Enterococcus/clasificación , Enterococcus/metabolismo , Gentamicinas/farmacología , Humanos , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , Estreptomicina/farmacología , Teicoplanina/farmacología , Turquía
7.
Appl Microbiol Biotechnol ; 104(5): 2125-2135, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31932895

RESUMEN

Recent research has shown that plants can uptake long dsRNAs and dsRNA-derived siRNAs that target important genes of infecting fungi or viruses when applied on the surface of plant leaves. The external RNAs were capable of local and systemic movement inducing plant resistance against the pathogens. Few studies have been made for plant gene regulation by foliar application of RNAs. In this study, several types of ssRNA and siRNA duplexes targeting the neomycin phosphotransferase II (NPTII) transgene were in vitro-synthesized and externally applied to the leaf surface of 4-week-old transgenic Arabidopsis thaliana plants. External application of the synthetic NPTII-encoding siRNAs down-regulated NPTII transcript levels in transgenic A. thaliana 1 and 7 days post-treatment with a higher and more consistent effect being observed for siRNAs methylated at 3' ends. We also analyzed the effects of external NPTII-encoding dsRNA precursors and a dsRNA-derived heterogenous siRNA mix. Digestion of the NPTII-dsRNA to the heterogeneous siRNAs did not improve efficiency of the transgene suppression effect. Key Points• Foliar application of siRNAs down-regulated a commonly used transgene in Arabidopsis. • A more consistent effect was observed for methylated siRNAs. • The findings are important for development of plant gene regulation approaches.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , ARN Interferente Pequeño/genética , Transgenes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Metilación de ADN , Regulación de la Expresión Génica de las Plantas/genética , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética
8.
Biotechnol Lett ; 42(4): 641-655, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31965394

RESUMEN

OBJECTIVES: In the plant transformation process, marker genes play a vital role in identifying transformed cells from non-transformed cells. However, once transgenic plants have been obtained, the presence of marker genes may provoke public concern about environmental or biosafety issues. In our previous study, a double T-DNA vector system has been developed to obtain marker-free transgenic plants, but the T-DNA left border (LB) and right border (RB) of the vector showed an RB-LB-RB-LB pattern and led to high linkage integration between the selectable marker gene (SMG) and the gene of interest (GOI). To improve this double T-DNA vector system, we inverted the first T-DNA direction such that a LB-RB-RB-LB pattern resulted to avoid transcriptional read-through at the LB and the subsequent linkage transfer of the SMG and GOI. RESULTS: We separately inserted the green fluorescent protein (GFP) gene as the GOI and the neomycin phosphotransferase II (NPTII) gene as the SMG in both optimized and original vectors and carried out Agrobacterium-mediated tobacco transformation. Statistical analysis revealed that the linkage frequency was 25.6% in T0 plants transformed with the optimized vector, which is a 42.1% decrease compared with that of the original vector (44.2%). The frequency of obtaining marker-free transgenic plants was 66.7% in T1 plants transformed with the optimized vector, showing a 33.4% increase compared with that of the original vector (50.0%). CONCLUSION: Our results demonstrate that the optimized double T-DNA binary vector system is a more effective, economical and time-saving approach for obtaining marker-free transgenic plants.


Asunto(s)
Agrobacterium tumefaciens/fisiología , ADN Bacteriano/genética , Nicotiana/crecimiento & desarrollo , Agrobacterium tumefaciens/genética , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología , Nicotiana/genética , Nicotiana/microbiología , Transformación Genética
9.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204356

RESUMEN

Eukaryotic filamentous yellow-green algae from the Tribonema genus are considered to be excellent candidates for biofuels and value-added products, owing to their ability to grow under autotrophic, mixotrophic, and heterotrophic conditions and synthesize large amounts of fatty acids, especially unsaturated fatty acids. To elucidate the molecular mechanism of fatty acids and/or establish the organism as a model strain, the development of genetic methods is important. Towards this goal, here, we constructed a genetic transformation method to introduce exogenous genes for the first time into the eukaryotic filamentous alga Tribonema minus via particle bombardment. In this study, we constructed pSimple-tub-eGFP and pEASY-tub-nptⅡ plasmids in which the green fluorescence protein (eGFP) gene and the neomycin phosphotransferase Ⅱ-encoding G418-resistant gene (nptⅡ) were flanked by the T. minus-derived tubulin gene (tub) promoter and terminator, respectively. The two plasmids were introduced into T. minus cells through particle-gun bombardment under various test conditions. By combining agar and liquid selecting methods to exclude the pseudotransformants under long-term antibiotic treatment, plasmids pSimple-tub-eGFP and pEASY-tub- nptⅡ were successfully transformed into the genome of T. minus, which was verified using green fluorescence detection and the polymerase chain reaction, respectively. These results suggest new possibilities for efficient genetic engineering of T. minus for future genetic improvement.


Asunto(s)
Células Eucariotas/metabolismo , Microalgas/genética , Estramenopilos/genética , Transformación Genética , Biocombustibles , Ácidos Grasos/metabolismo , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microbiología Industrial/métodos , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Microalgas/metabolismo , Estramenopilos/metabolismo
10.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979077

RESUMEN

Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3'-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter.


Asunto(s)
Microalgas/genética , Plásmidos/genética , Transgenes/genética , Antibacterianos/farmacología , Marcadores Genéticos/genética , Kanamicina Quinasa/genética , Paromomicina/farmacología , Regiones Promotoras Genéticas/genética , Streptomyces/efectos de los fármacos , Streptomyces/genética , Transformación Genética/genética
11.
Plant Mol Biol ; 100(3): 247-263, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30919152

RESUMEN

KEY MESSAGE: A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.


Asunto(s)
Edición Génica/métodos , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Recombinación Genética , Saccharum/genética , Biocombustibles , Técnicas de Cultivo de Célula , Línea Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Marcadores Genéticos , Kanamicina Quinasa/genética , Proteínas de Plantas/genética
12.
BMC Microbiol ; 19(1): 221, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533627

RESUMEN

BACKGROUND: TnaphA6-carrying repAci6 plasmids have been detected in Acinetobacter baumannii isolates belonging to global clones, GC1 and GC2, worldwide. Here, we examined whether RepAci6 plasmids family play a role in the dissemination of the aphA6 in GC1 A. baumannii isolates from Iran. RESULTS: We found that 22 isolates carried the repAci6 gene, suggesting that they contain a RepAci6 plasmid family. Using the primers linking the aphA6 gene to the backbone of repAci6 plasmid, it was revealed that 16 isolates from different hospitals harbored TnaphA6 on a repAci6 plasmid. CONCLUSIONS: This study provides evidence for the dissemination of TnaphA6 on the plasmids encoding RepAci6 in Iranian A. baumannii isolates. Furthermore, it seems that TnaphA6 might be acquired by distinct plasmids separately as it was found to be located on the variants of repAci6 plasmids.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Amicacina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Kanamicina Quinasa/genética , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Elementos Transponibles de ADN/genética , Humanos , Irán/epidemiología , Plásmidos/genética
13.
Plant Physiol ; 178(4): 1436-1447, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30206105

RESUMEN

Insertional mutagenesis, in which a piece of exogenous DNA is integrated randomly into the genomic DNA of the recipient cell, is a useful method to generate new mutants with phenotypes of interest. The unicellular green alga Chlamydomonas reinhardtii is an outstanding model for studying many biological processes. We developed a new computational algorithm, MAPINS (mapping insertions), to efficiently identify insertion sites created by the integration of an APHVIII (aminoglycoside 3'-phosphotransferase VIII) cassette that confers paromomycin resistance. Using whole-genome sequencing data, this method eliminates the need for genomic DNA manipulation and retains all the sequencing information provided by paired-end sequencing. We experimentally verified 38 insertion sites out of 41 sites (93%) identified by MAPINS from 20 paromomycin-resistant strains. Using meiotic analysis of 18 of these strains, we identified insertion sites that completely cosegregate with paromomycin resistance. In six of the seven strains with a mutant phenotype, we demonstrated complete cosegregation of the mutant phenotype and the verified insertion site. In addition, we provide direct evidence of complex rearrangements of genomic DNA in five strains, three of which involve the APHVIII insertion site. We suggest that strains obtained by insertional mutagenesis are more complicated than expected from previous analyses in Chlamydomonas To map the locations of some complex insertions, we designed 49 molecular markers based on differences identified via whole-genome sequencing between wild-type strains CC-124 and CC-125. Overall, MAPINS provides a low-cost, efficient method to characterize insertional mutants in Chlamydomonas.


Asunto(s)
Chlamydomonas reinhardtii/genética , Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Reordenamiento Génico , Mutagénesis Insercional , Mapeo Cromosómico , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Vectores Genéticos , Kanamicina Quinasa/genética , Paromomicina/farmacología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
14.
Br Poult Sci ; 60(6): 798-801, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31441325

RESUMEN

1. The aim of the experiment was to determine the occurrence of genes encoding aminoglycoside-modifying enzymes (AMEs) in Escherichia coli isolates recovered from chicken meat.2. Antibiotic sensitivity was tested using the disc diffusion test. AMEs and virulence profile were determined by PCR/sequencing.3. Out of 195 meat samples collected, 185 (95%) isolates were identified as E. coli. Disc diffusion showed a resistance value of 22% (n = 42) for at least one of the antibiotic aminoglycosides (AGs) tested (tobramycin, gentamycin, amikacin and kanamycin). PCR screening showed the presence of three classes of AMEs, namely, aac(3)-II (12%), aac(6')-Ib (7%) and aac(2')-Ia (5%). Eight of the 42 isolates were positive for the stx1 and sxt2 genes and were defined as Shiga toxin-producing E coli., while the eae gene was positive in one strain. Among the 42 isolates, group A was the predominant phylogenetic identified (76%), followed by group D (21%). One isolate belonged to subgroup B23.4. The results suggested that chicken meat could be an important reservoir of AMEs, and pose a potential risk by dissemination of resistance to humans through the food chain.


Asunto(s)
Acetiltransferasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Kanamicina Quinasa/genética , Nucleotidiltransferasas/genética , Aves de Corral/microbiología , Acetiltransferasas/metabolismo , Aminoglicósidos/metabolismo , Aminoglicósidos/farmacología , Animales , Pollos/microbiología , Pruebas Antimicrobianas de Difusión por Disco/veterinaria , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Técnicas de Genotipaje/veterinaria , Kanamicina Quinasa/metabolismo , Nucleotidiltransferasas/metabolismo , Filogenia , Virulencia/genética
15.
Plant Mol Biol ; 98(4-5): 303-317, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30225747

RESUMEN

KEY MESSAGE: Two intercistronic regions were identified as functional intercistronic expression elements (IEE) for the simultaneous expression of aphA-6 and gfp in a synthetic operon in the chloroplast of C. reinhardtii. Chlamydomonas reinhardtii, a biflagellate photosynthetic microalga, has been widely used in basic and applied science. Already three decades ago, Chlamydomonas had its chloroplast genome transformed and to this day constitutes the only alga routinely used in transplastomic technology. Despite the fact that over a 100 foreign genes have been expressed from the chloroplast genome, little has been done to address the challenge of expressing multiple genes in the form of operons, a development that is needed and crucial to push forward metabolic engineering and synthetic biology in this organism. Here, we studied five intercistronic regions and investigated if they can be used as intercistronic expression elements (IEE) in synthetic operons to drive the expression of foreign genes in the chloroplast of C. reinhardtii. The intercistronic regions were those from the psbB-psbT, psbN-psbH, psaC-petL, petL-trnN and tscA-chlN chloroplast operons, and the foreign genes were the aminoglycoside 3'-phosphotransferase (aphA-6), which confers resistance to kanamycin, and the green fluorescent protein gene (gfp). While all the intercistronic regions yielded lines that were resistant to kanamycin, only two (obtained with intercistronic regions from psbN-psbH and tscA-chlN) were identified as functional IEEs, yielding lines in which the second cistron (gfp) was translated and generated GFP. The IEEs we have identified could be useful for the stacking of genes for metabolic engineering or synthetic biology circuits in the chloroplast of C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , ADN Intergénico/genética , Genes de Plantas/genética , Operón/genética , Plantas Modificadas Genéticamente/genética , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/genética , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-29109167

RESUMEN

Nine aph genes, including aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Ig, aph(2″)-If, aph(2″)-If1, aph(2″)-If3, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, and aac(6')-Ie-aph(2″)-If2, were previously identified in Campylobacter To measure the contribution of these alleles to aminoglycoside resistance, we cloned nine genes into the pBluescript and expressed them in Escherichia coli DH5α. The nine aph expressed in E. coli showed various levels of resistance to gentamicin, kanamycin, and tobramycin. Three genes, aac(6″)-Ie-aph(2″)-Ia, aph2″-If1, and aph2″-Ig, showed increased MICs to amikacin, and five aph genes were transferrable.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Campylobacter/enzimología , Campylobacter/genética , Farmacorresistencia Bacteriana/genética , Kanamicina Quinasa/genética , Campylobacter/efectos de los fármacos , Clonación Molecular , Conjugación Genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Kanamicina Quinasa/biosíntesis , Pruebas de Sensibilidad Microbiana
17.
FASEB J ; 31(7): 3007-3017, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28373209

RESUMEN

While working with G418-resistant stably transfected cells, we realized the neomycin resistance (NeoR) gene, which encodes the aminoglycoside-3'-phosphotransferase-IIa [APH(3')-IIa], also confers resistance to the nucleoside analog fludarabine. Fludarabine is a cytostatic drug widely used in the treatment of hematologic and solid tumors, as well as in the conditioning of patients before transplantation of hematopoietic progenitors. We present evidence that NeoR-transfected cells do not incorporate fludarabine, thus avoiding DNA damage caused by the drug, evidenced by a lack of FANCD2 monoubiquitination and impaired apoptosis. A screening of other nucleoside analogs revealed that APH(3')-IIa only protects against ATP purine analogs. Moreover, APH(3')-IIa ATPase activity is inhibited by fludarabine monophosphate, suggesting that APH(3')-IIa blocks fludarabine incorporation into DNA by dephosphorylating its active fludarabine triphosphate form. Furthermore, overexpression of the catalytic subunit of the eukaryotic kinase PKA, which is structurally related to APHs, also provides resistance to fludarabine, anticipating its putative utility as a response marker to the drug. Our results preclude the use of Neo marker plasmids in the study of purine analogs and unveils a new resistance mechanism against these chemotherapeuticals.-Sánchez-Carrera, D., Bravo-Navas, S., Cabezón, E., Arechaga, I., Cabezas, M., Yáñez, L., Pipaón, C. Fludarabine resistance mediated by aminoglycoside-3'-phosphotransferase-IIa and the structurally related eukaryotic cAMP-dependent protein kinase.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Resistencia a Antineoplásicos/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Kanamicina Quinasa/metabolismo , Vidarabina/análogos & derivados , Sitios de Unión , Línea Celular Transformada , Clonación Molecular , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Fibroblastos , Humanos , Kanamicina Quinasa/genética , Estructura Molecular , Relación Estructura-Actividad , Vidarabina/química , Vidarabina/farmacología
18.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986409

RESUMEN

Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant.


Asunto(s)
Chlorella vulgaris/genética , Complejo de Proteína del Fotosistema I/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/fisiología , Chlamydomonas reinhardtii/genética , Expresión Génica , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Luz , Luciferasas/genética , Luciferasas/metabolismo , Plantas Modificadas Genéticamente/genética , Análisis de Secuencia de ADN , TATA Box , Nicotiana/genética
19.
Microb Pathog ; 110: 546-553, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28774859

RESUMEN

High level aminoglycoside resistance (HLAR) in the lactic acid bacteria (LAB) derived from food animals is detrimental. The aim of this study was to investigate the localization and conjugal transfer of aminoglycoside resistance genes, aac(6')Ie-aph(2″)Ia and aph(3')IIIa in different Enterococcus species. The cross resistance patterns in Enterococcus faecalis MCC3063 to clinically important aminoglycosides by real time PCR were also studied. Southern hybridization experiments revealed the presence of aac(6')Ie-aph(2″)Ia and aph(3')IIIa genes conferring HLAR in high molecular weight plasmids except in Lactobacillus plantarum. The plasmid encoded bifunctional aac(6')Ie-aph(2″)Ia gene was transferable from Enterococcus avium (n = 2), E. cecorum (n = 1), E. faecalis (n = 1) and Pediococcus lolii (n = 1) species into the recipient strain; E. faecalis JH2-2 by filter mating experiments thus indicating the possible risks of gene transfer into pathogenic strains. Molecular analysis of cross resistance patterns in native isolate of E. faecalis MCC3063 carrying aac(6')Ie-aph(2″)Ia and aph(3')IIIa gene was displayed by quantification of the mRNA levels in this study. For this, the culture was induced with increasing concentrations of gentamicin, kanamycin and streptomycin (2048, 4096, 8192, 16384 µg/mL) individually. The increasing concentrations of gentamicin and kanamycin induced the expression of the aac(6')Ie-aph(2″)Ia and aph(3')IIIa resistance genes, respectively. Interestingly, it was observed that induction with streptomycin triggered a significant fold increase in the expression of the aph(3')IIIa gene which otherwise was not known to modify the aminoglycoside. This is noteworthy as streptomycin was found to confer cross resistance to structurally unrelated kanamycin. Also, expression of the aph(3')IIIa gene when induced with streptomycin, revealed that bacteria harbouring this gene will be able to overcome streptomycin bactericidal action at specific concentrations. HLAR in E. faecalis MCC3063 may be due to the combined expression of both the aac(6')Ie-aph(2″)Ia and aph(3')IIIa genes which could be therapeutically challenging. A combined expression of both the genes in E. faecalis MCC3063 may yield HLAR which could be therapeutically challenging. The study highlights the significant alterations in the mRNA expression levels of aac(6')Ie-aph(2″)Ia and aph(3')IIIa in resistant pathogens, upon exposure to clinically vital aminoglycosides.


Asunto(s)
Acetiltransferasas/genética , Conjugación Genética , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Transferencia de Gen Horizontal , Genes Bacterianos , Kanamicina Quinasa/genética , Aminoglicósidos/farmacología , Animales , Antibacterianos/farmacología , Southern Blotting , ADN Bacteriano/genética , Enterococcus/enzimología , Enterococcus/genética , Humanos , Lactobacillus plantarum/efectos de los fármacos , Lactobacillus plantarum/genética , Pediococcus/efectos de los fármacos , Pediococcus/genética , Plásmidos/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Plasmid ; 94: 1-6, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28986243

RESUMEN

Corynebacterium glutamicum is an attractive host for the production of heterologous proteins despite its traditional use in fermentative production of amino acids. To enhance the expression levels of target genes, the development of useful promoters is required in the construction of expression systems. Here, we developed a new promoter, the aph promoter from aminoglycoside-3'-phosphotransferase gene, and used it to construct monocistronic and bicistronic expression systems that host different ribosome binding site (RBS) sequences. First, the expression level of the reporter protein, enhanced green fluorescent protein (EGFP), varied with changes in the RBS sequences in the constructed vectors. The results showed that the fluorescence intensities of the bicistronic group were higher than those of the monocistronic group and that RM3E showed the highest fluorescence intensity, which was 42-fold higher than the lowest (RA2E') among these groups. Next, taking advantage of the optimized aph promoter, we successfully employed this aph promoter for α-amylase and VHH (camelid antibody fragment) expression. The secretion of α-amylase improved 1.5-fold after promoter mutation. This promoter will be useful for heterologous protein production in C. glutamicum cells.


Asunto(s)
Corynebacterium glutamicum/genética , Kanamicina Quinasa/genética , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Sitios de Unión , Corynebacterium glutamicum/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes , Mutación , Unión Proteica , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA