Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(7): 2522-2529, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289871

RESUMEN

Lesions in the language-dominant ventral occipitotemporal cortex (vOTC) can result in selective impairment of either reading or naming, resulting in alexia or anomia. Yet, functional imaging studies that show differential activation for naming and reading do not reveal activity exclusively tuned to one of these inputs. To resolve this dissonance in the functional architecture of the vOTC, we used focused stimulation to the vOTC in 49 adult patients during reading and naming, and generated a population-level, probabilistic map to evaluate if reading and naming are clearly dissociable within individuals. Language mapping (50 Hz, 2829 stimulations) was performed during passage reading (216 positive sites) and visual naming (304 positive sites). Within the vOTC, we isolated sites that selectively disrupted reading (24 sites in 11 patients) or naming (27 sites in 12 patients), and those that disrupted both processes (75 sites in 21 patients). The anteromedial vOTC had a higher probability of producing naming disruption, while posterolateral regions resulted in greater reading-specific disruption. Between them lay a multi-modal region where stimulation disrupted both reading and naming. This work provides a comprehensive view of vOTC organization-the existence of a heteromodal cortex critical to both reading and naming, along with a causally dissociable unimodal naming cortex, and a reading-specific visual word form area in the vOTC. Their distinct roles as associative regions may thus relate to their connectivity within the broader language network that is disrupted by stimulation, more than to highly selective tuning properties. Our work also implies that pre-surgical mapping of both reading and naming is essential for patients requiring vOTC resections, as these functions are not co-localized, and such mapping may prevent the occurrence of unexpected deficits.


Asunto(s)
Mapeo Encefálico , Lóbulo Occipital , Lectura , Lóbulo Temporal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiopatología , Adulto , Lóbulo Temporal/fisiopatología , Lóbulo Temporal/diagnóstico por imagen , Mapeo Encefálico/métodos , Anciano , Imagen por Resonancia Magnética , Adulto Joven , Lenguaje , Estimulación Luminosa/métodos
2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39152673

RESUMEN

Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.


Asunto(s)
Ceguera , Frecuencia Cardíaca , Lóbulo Occipital , Humanos , Masculino , Femenino , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Adulto , Frecuencia Cardíaca/fisiología , Ceguera/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Adulto Joven , Interocepción/fisiología
3.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39191663

RESUMEN

The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.


Asunto(s)
Juicio , Imagen por Resonancia Magnética , Lectura , Humanos , Masculino , Femenino , Juicio/fisiología , Adulto Joven , Adulto , Estimulación Luminosa/métodos , Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología , Semántica , Lóbulo Temporal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen
4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077920

RESUMEN

Contextual features are integral to episodic memories; yet, we know little about context effects on pattern separation, a hippocampal function promoting orthogonalization of overlapping memory representations. Recent studies suggested that various extrahippocampal brain regions support pattern separation; however, the specific role of the parahippocampal cortex-a region involved in context representation-in pattern separation has not yet been studied. Here, we investigated the contribution of the parahippocampal cortex (specifically, the parahippocampal place area) to context reinstatement effects on mnemonic discrimination, using functional magnetic resonance imaging. During scanning, participants saw object images on unique context scenes, followed by a recognition task involving the repetitions of encoded objects or visually similar lures on either their original context or a lure context. Context reinstatement at retrieval improved item recognition but hindered mnemonic discrimination. Crucially, our region of interest analyses of the parahippocampal place area and an object-selective visual area, the lateral occipital cortex indicated that while during successful mnemonic decisions parahippocampal place area activity decreased for old contexts compared to lure contexts irrespective of object novelty, lateral occipital cortex activity differentiated between old and lure objects exclusively. These results imply that pattern separation of contextual and item-specific memory features may be differentially aided by scene and object-selective cortical areas.


Asunto(s)
Imagen por Resonancia Magnética , Lóbulo Occipital , Giro Parahipocampal , Reconocimiento Visual de Modelos , Reconocimiento en Psicología , Humanos , Femenino , Masculino , Giro Parahipocampal/fisiología , Giro Parahipocampal/diagnóstico por imagen , Adulto Joven , Adulto , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Mapeo Encefálico/métodos , Estimulación Luminosa/métodos , Memoria Episódica
5.
J Cell Mol Med ; 28(8): e18245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613356

RESUMEN

Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (H3/IDH-wt-pHGG) is a newly defined entity amongst brain tumours, primarily reported in children. It is a rare, ill-defined type of tumour and the only method to diagnose it is DNA methylation profiling. The case we report here carries new knowledge about this tumour which may, in fact, occur in elderly patients, be devoid of evocative genomic abnormalities reported in children and harbour a misleading mutation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Sustancia Blanca , Anciano , Femenino , Humanos , Niño , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Genómica , Lóbulo Occipital/diagnóstico por imagen
6.
Neuroimage ; 298: 120805, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173692

RESUMEN

The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Lóbulo Occipital , Percepción Visual , Humanos , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/diagnóstico por imagen , Mapeo Encefálico , Potenciales Evocados Visuales/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Concienciación/fisiología
7.
Hum Brain Mapp ; 45(2): e26583, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339902

RESUMEN

Although it has been established that cross-modal activations occur in the occipital cortex during auditory processing among congenitally and early blind listeners, it remains uncertain whether these activations in various occipital regions reflect sensory analysis of specific sound properties, non-perceptual cognitive operations associated with active tasks, or the interplay between sensory analysis and cognitive operations. This fMRI study aimed to investigate cross-modal responses in occipital regions, specifically V5/MT and V1, during passive and active pitch perception by early blind individuals compared to sighted individuals. The data showed that V5/MT was responsive to pitch during passive perception, and its activations increased with task complexity. By contrast, widespread occipital regions, including V1, were only recruited during two active perception tasks, and their activations were also modulated by task complexity. These fMRI results from blind individuals suggest that while V5/MT activations are both stimulus-responsive and task-modulated, activations in other occipital regions, including V1, are dependent on the task, indicating similarities and differences between various visual areas during auditory processing.


Asunto(s)
Lóbulo Occipital , Percepción de la Altura Tonal , Humanos , Lóbulo Occipital/diagnóstico por imagen , Percepción de la Altura Tonal/fisiología , Percepción Auditiva/fisiología , Ceguera/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
8.
BMC Med ; 22(1): 392, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272182

RESUMEN

BACKGROUND: Air pollution, a reversible environmental factor, was significantly associated with the cognitive domains that are impaired in major depressive disorder (MDD), notably processing speed. Limited evidence explores the interactive effect of air pollution and the genetic risk of depression on cognition. This cross-sectional study aims to extend the research by specifically examining how this interaction influences depression-related cognitive impairment and resting-state brain function. METHODS: Eligible participants were 497 healthy adult volunteers (48.7% males, mean age 24.5) living in Beijing for at least 1 year and exposed to relatively high air pollution from the local community controlling for socioeconomic and genomic. Six months' ambient air pollution exposures were assessed based on residential addresses using monthly averages of fine particulate matter with a diameter of less than or equal to 2.5 µm (PM2.5). A cross-sectional analysis was conducted using functional magnetic resonance imaging (fMRI) and cognitive performance assessments. The polygenic risk score (PRS) of MDD was used to estimate genetic susceptibility. RESULTS: Using a general linear model and partial least square regression, we observed a negative association between resting-state local connectivity in precuneus and PRS-by-PM2.5 interactive effect (PFWE = 0.028), indicating that PM2.5 exposure reduced the spontaneous activity in precuneus in individuals at high genetic risk for MDD. DNA methylation and gene expression of the SLC30A3 gene, responsible for maintaining zinc-glutamate homeostasis, was suggestively associated with this local connectivity. For the global functional connectivity, the polygenic risk for MDD augmented the neural impact of PM2.5 exposure, especially in the frontal-parietal and frontal-limbic regions of the default mode network (PFDR < 0.05). In those genetically predisposed to MDD, increased PM2.5 exposure positively correlated with resting-state functional connectivity between the left angular gyrus and left cuneus gyrus. This connectivity was negatively associated with processing speed. CONCLUSIONS: Our cross-sectional study suggests that air pollution may be associated with an increased likelihood of cognitive impairment in individuals genetically predisposed to depression, potentially through alterations in the resting-state function of the occipitoparietal and default mode network.


Asunto(s)
Contaminación del Aire , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Estudios Transversales , Contaminación del Aire/efectos adversos , Adulto , Adulto Joven , Predisposición Genética a la Enfermedad , Material Particulado/efectos adversos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/diagnóstico por imagen , Beijing , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiopatología , Velocidad de Procesamiento
9.
Cereb Cortex ; 33(22): 11010-11024, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37782936

RESUMEN

Social and nonsocial directional stimuli (such as gaze and arrows, respectively) share their ability to trigger attentional processes, although the issue of whether social stimuli generate other additional (and unique) attentional effects is still under debate. In this study, we used the spatial interference paradigm to explore, using functional magnetic resonance imaging, shared and dissociable brain activations produced by gaze and arrows. Results showed a common set of regions (right parieto-temporo-occipital) similarly involved in conflict resolution for gaze and arrows stimuli, which showed stronger co-activation for incongruent than congruent trials. The frontal eye field showed stronger functional connectivity with occipital regions for congruent as compared with incongruent trials, and this effect was enhanced for gaze as compared with arrow stimuli in the right hemisphere. Moreover, spatial interference produced by incongruent (as compared with congruent) arrows was associated with increased functional coupling between the right frontal eye field and a set of regions in the left hemisphere. This result was not observed for incongruent (as compared with congruent) gaze stimuli. The right frontal eye field also showed greater coupling with left temporo-occipital regions for those conditions in which larger conflict was observed (arrow incongruent vs. gaze incongruent trials, and gaze congruent vs. arrow congruent trials). These findings support the view that social and nonsocial stimuli share some attentional mechanisms, while at the same time highlighting other differential effects. Highlights Attentional orienting triggered by social (gaze) and nonsocial (arrow) cues is comparable. When social and nonsocial stimuli are used as targets, qualitatively different behavioral effects are observed. This study explores the neural bases of shared and dissociable neural mechanisms for social and nonsocial stimuli. Shared mechanisms were found in the functional coupling between right parieto-temporo-occipital regions. Dissociable mechanisms were found in the functional coupling between right frontal eye field and ipsilateral and contralateral occipito-temporal regions.


Asunto(s)
Atención , Fijación Ocular , Atención/fisiología , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología
10.
Cereb Cortex ; 33(24): 11526-11540, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37851850

RESUMEN

The occipital cortex is the visual processing center in the mammalian brain. An unanswered scientific question pertains to the impact of congenital visual deprivation on the development of various profiles within the occipital network. To address this issue, we recruited 30 congenitally blind participants (8 children and 22 adults) as well as 31 sighted participants (10 children and 21 adults). Our investigation focused on identifying the gray matter regions and white matter connections within the occipital cortex, alongside behavioral measures, that demonstrated different developmental patterns between blind and sighted individuals. We discovered significant developmental changes in the gray matter regions and white matter connections of the occipital cortex among blind individuals from childhood to adulthood, in comparison with sighted individuals. Moreover, some of these structures exhibited cognitive functional reorganization. Specifically, in blind adults, the posterior occipital regions (left calcarine fissure and right middle occipital gyrus) showed reorganization of tactile perception, and the forceps major tracts were reorganized for braille reading. These plastic changes in blind individuals may be attributed to experience-dependent neuronal apoptosis, pruning, and myelination. These findings provide valuable insights into the longitudinal neuroanatomical and cognitive functional plasticity of the occipital network following long-term visual deprivation.


Asunto(s)
Imagen por Resonancia Magnética , Lóbulo Occipital , Adulto , Niño , Humanos , Adolescente , Adulto Joven , Lóbulo Occipital/diagnóstico por imagen , Encéfalo , Ceguera , Corteza Cerebral , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA