Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 16(6): e1008455, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32544189

RESUMEN

The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.


Asunto(s)
Ciclo Celular , Enzimas Desubicuitinizantes/metabolismo , Leishmania mexicana/enzimología , Proteínas Protozoarias/metabolismo , Ubiquitinación , Animales , Enzimas Desubicuitinizantes/genética , Femenino , Eliminación de Gen , Leishmania mexicana/genética , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética
2.
Exp Parasitol ; 229: 108154, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34481863

RESUMEN

The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.


Asunto(s)
Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea Difusa/parasitología , Piruvatos/farmacología , Animales , Western Blotting , Brasil , Cricetinae , Humanos , Leishmania mexicana/enzimología , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/metabolismo , Macrófagos/parasitología , Ratones , Consumo de Oxígeno/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Células RAW 264.7
3.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948408

RESUMEN

Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 µM and 82 µM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.


Asunto(s)
Antiprotozoarios/farmacología , Arginasa/antagonistas & inhibidores , Bencimidazoles/farmacología , Leishmania mexicana/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/química , Arginasa/metabolismo , Bencimidazoles/química , Línea Celular , Descubrimiento de Drogas , Humanos , Leishmania mexicana/enzimología , Leishmania mexicana/fisiología , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Modelos Moleculares , Proteínas Protozoarias/metabolismo
4.
Bioorg Med Chem ; 28(22): 115743, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038787

RESUMEN

Leishmania mexicana is an obligate intracellular protozoan parasite that causes the cutaneous form of leishmaniasis affecting South America and Mexico. The cysteine protease LmCPB is essential for the virulence of the parasite and therefore, it is an appealing target for antiparasitic therapy. A library of nitrile-based cysteine protease inhibitors was screened against LmCPB to develop a treatment of cutaneous leishmaniasis. Several compounds are sufficiently high-affinity LmCPB inhibitors to serve both as starting points for drug discovery projects and as probes for target validation. A 1.4 Å X ray crystal structure, the first to be reported for LmCPB, was determined for the complex of this enzyme covalently bound to an azadipeptide nitrile ligand. Mapping the structure-activity relationships for LmCPB inhibition revealed superadditive effects for two pairs of structural transformations. Therefore, this work advances our understanding of azadipeptidyl and dipeptidyl nitrile structure-activity relationships for LmCPB structure-based inhibitor design. We also tested the same series of inhibitors on related cysteine proteases cathepsin L and Trypanosoma cruzi cruzain. The modulation of these mammalian and protozoan proteases represents a new framework for targeting papain-like cysteine proteases.


Asunto(s)
Compuestos Aza/farmacología , Catepsina B/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Leishmania mexicana/efectos de los fármacos , Tripanocidas/farmacología , Compuestos Aza/síntesis química , Compuestos Aza/química , Catepsina B/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Dipéptidos/síntesis química , Dipéptidos/química , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Leishmania mexicana/enzimología , Simulación de Dinámica Molecular , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
5.
Exp Parasitol ; 200: 84-91, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30954455

RESUMEN

Cysteine proteases are involved in critical cell processes to the protozoa from Leishmania genus, and their inhibition is a therapeutic alternative to treat the disease. In this work, derivatives of dipeptidyl nitriles acting as reversible covalent inhibitors of cysteine proteases were studied as cytostatic agents. The proteolytic activity inside the living and lysed parasite cells was quantified using a selective substrate for cysteine proteases (Z-FR-MCA) from Leishmania amazonensis and L. infantum. The overall proteolytic activity of intact cells and even cell extracts was only marginally affected at high concentrations, with the observation of cytostatic activity and cell cycle arrest of promastigotes. However, the cytotoxic effects were only observed for infected J774 macrophages, which impaired further analysis of the amastigote infection. Therefore, the proteolytic inhibition in intact L. amazonensis and L. infantum promastigotes had no relationship to the cytostatic activity, which emphasizes that these dipeptidyl nitriles act through another mechanism of action.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Citostáticos/farmacología , Leishmania infantum/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Nitrilos/farmacología , Animales , Antiprotozoarios/química , Línea Celular , Inhibidores de Cisteína Proteinasa/química , Citostáticos/química , Fibroblastos/efectos de los fármacos , Citometría de Flujo , Leishmania infantum/enzimología , Leishmania mexicana/enzimología , Macrófagos/efectos de los fármacos , Ratones , Nitrilos/química
6.
Molecules ; 24(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487860

RESUMEN

Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/química , Tripanocidas/química , Tripanocidas/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Relación Dosis-Respuesta a Droga , Enlace de Hidrógeno , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Farmacocinética , Proteínas Recombinantes/química , Relación Estructura-Actividad
7.
J Biol Chem ; 292(29): 12324-12338, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28550086

RESUMEN

Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.


Asunto(s)
Hierro/metabolismo , Leishmania mexicana/enzimología , Mitocondrias/enzimología , Proteínas Protozoarias/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/parasitología , Células de la Médula Ósea/patología , Línea Celular , Células Cultivadas , Células Clonales , Femenino , Técnicas de Inactivación de Genes , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/patogenicidad , Leishmania mexicana/ultraestructura , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Carga de Parásitos , Transporte de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Interferencia de ARN , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Virulencia
8.
Parasitology ; 145(4): 490-496, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28274283

RESUMEN

The aims of the present work were to test the effect of tamoxifen administered topically and the therapeutic efficacy of tamoxifen and pentavalent antimonial combinations in an experimental model of cutaneous leishmaniasis. BALB/c mice infected with a luciferase expressing line of Leishmania amazonensis were treated with topical tamoxifen in two different formulations (ethanol or oil-free cream) as monotherapy or in co-administration with pentavalent antimonial. Treatment efficacy was evaluated by lesion size and parasite burden, quantified through luminescence, at the end of treatment and 4 weeks later. Topical tamoxifen, formulated in ethanol or as a cream, was shown to be effective. The interaction between tamoxifen and pentavalent antimonial was additive in vitro. Treatment with combined schemes containing tamoxifen and pentavalent antimonial was effective in reducing lesion size and parasite burden. Co-administration of tamoxifen and pentavalent antimonial was superior to monotherapy with antimonial.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Antimoniato de Meglumina/uso terapéutico , Piel/efectos de los fármacos , Tamoxifeno/uso terapéutico , Administración Tópica , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/efectos adversos , Quimioterapia Combinada/efectos adversos , Etanol/química , Femenino , Leishmania mexicana/enzimología , Leishmania mexicana/genética , Leishmaniasis Cutánea/parasitología , Luciferasas/genética , Luminiscencia , Antimoniato de Meglumina/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Piel/parasitología , Crema para la Piel/administración & dosificación , Crema para la Piel/efectos adversos , Crema para la Piel/uso terapéutico , Tamoxifeno/administración & dosificación , Tamoxifeno/efectos adversos , Tamoxifeno/química
9.
Exp Parasitol ; 184: 82-89, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29191699

RESUMEN

The identification of specific therapeutic targets and the development of new drugs against leishmaniasis are urgently needed, since chemotherapy currently available for its treatment has several problems including many adverse side effects. In an effort to develop new antileishmanial drugs, in the present study a series of 28 N-benzyl-1H-benzimidazol-2-amine derivatives was synthesized and evaluated in vitro against Leishmania mexicana promastigotes. Compounds 7 and 8 with the highest antileishmanial activity (micromolar) and lower cytotoxicity than miltefosine and amphotericin B were selected to evaluate their activity against L. braziliensis 9and L. donovani, species causative of mucocutaneous and visceral leishmaniasis, respectively. Compound 7 showed significantly higher activity against L. braziliensis promastigotes than compound 8 and slightly lower than miltefosine. Compounds 7 and 8 had IC50 values in the micromolar range against the amastigote of L. mexicana and L. braziliensis. However, both compounds did not show better activity against L. donovani than miltefosine. Compound 8 showed the highest SI against both parasite stages of L. mexicana. In addition, compound 8 inhibited 68.27% the activity of recombinant L. mexicana arginase (LmARG), a therapeutic target for the treatment of leishmaniasis. Docking studies were also performed in order to establish the possible mechanism of action by which this compound exerts its inhibitory effect. Compound 8 shows promising potential for the development of more potent antileishmanial benzimidazole derivatives.


Asunto(s)
Antiprotozoarios/farmacología , Bencimidazoles/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Secuencia de Aminoácidos , Anfotericina B/farmacología , Animales , Antiprotozoarios/toxicidad , Arginasa/antagonistas & inhibidores , Arginasa/química , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/toxicidad , Línea Celular , Concentración 50 Inhibidora , Leishmania mexicana/enzimología , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Mucocutánea/tratamiento farmacológico , Leishmaniasis Mucocutánea/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Macrófagos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Alineación de Secuencia
10.
Mol Microbiol ; 100(6): 931-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991545

RESUMEN

Leishmania mexicana has a large family of cyclin-dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2-related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co-expression of a CRK3 transgene during rapamycin-induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3(T178E) mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.


Asunto(s)
Leishmania mexicana/citología , Leishmania mexicana/genética , Proteínas Proto-Oncogénicas c-crk/genética , Proteínas Proto-Oncogénicas c-crk/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Eliminación de Gen , Integrasas/genética , Integrasas/metabolismo , Leishmania mexicana/enzimología , Leishmaniasis Cutánea/microbiología , Ratones , Ratones Endogámicos BALB C , Genética Inversa/métodos , Sirolimus/farmacología
11.
Appl Microbiol Biotechnol ; 101(19): 7187-7200, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28785897

RESUMEN

Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.


Asunto(s)
Leishmania mexicana/enzimología , Nucleósidos/biosíntesis , Pentosiltransferasa/metabolismo , Purinas/química , Secuencia de Aminoácidos , Biocatálisis , Clonación Molecular , Biología Computacional , Enzimas Inmovilizadas , Concentración de Iones de Hidrógeno , Leishmania mexicana/genética , Pentosiltransferasa/genética , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
12.
Parasitology ; 143(11): 1409-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27220404

RESUMEN

Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1ß, IL-12p70 and IL-10 in human macrophages.


Asunto(s)
Citocinas/inmunología , Interacciones Huésped-Parásitos , Leishmania mexicana/enzimología , Macrófagos/inmunología , Proteína Fosfatasa 2C/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Transporte Biológico , Medios de Cultivo/química , Citocinas/biosíntesis , Humanos , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Leishmania mexicana/genética , Leishmania mexicana/inmunología , Leishmania mexicana/ultraestructura , Ratones , Microscopía Electrónica , Proteína Fosfatasa 2C/inmunología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Protozoarias/inmunología , Transducción de Señal
13.
Exp Parasitol ; 169: 111-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27531705

RESUMEN

The protozoan parasite Leishmania amazonensis is the etiological agent of cutaneous leishmaniasis. During its life cycle, the flagellated metacyclic promastigote forms are transmitted to vertebrate hosts by sandfly bites, and they develop into amastigotes inside macrophages, where they multiply. L. amazonensis possesses a bifunctional enzyme, called 3'-nucleotidase/nuclease (3'NT/NU), which is able to hydrolyze extracellular 3'-monophosphorylated nucleosides and nucleic acids. 3'NT/NU plays an important role in the generation of extracellular adenosine and has been described as a key enzyme in the acquisition of purines by trypanosomatids. Furthermore, it has been observed that 3'NT/NU also plays a valuable role in the establishment of parasitic infection. In this context, this study aimed to investigate the modulation of the 3'-nucleotidase (3'NT) activity of L. amazonensis by several nucleotides. It was observed that 3'NT activity is inhibited by micromolar concentrations of guanosine and guanine nucleotides. The inhibition promoted by 5'-GMP on the 3'NT activity of L. amazonensis is reversible and uncompetitive because the addition of the inhibitor decreased the kinetic parameters Km and Vmax. Finally, we found that the addition of 5'-GMP is able to reverse the stimulation promoted by 3'-AMP in a macrophage-parasite interaction assay. The determination of compounds that can inhibit the 3'NT activity of Leishmania is very important because this enzyme does not occur in mammals, making it a potential therapeutic target.


Asunto(s)
Guanosina Difosfato/farmacología , Guanosina Monofosfato/farmacología , Guanosina Trifosfato/farmacología , Leishmania mexicana/enzimología , Nucleotidasas/antagonistas & inhibidores , Animales , Cinética , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Ratones , Nucleotidasas/metabolismo , Células RAW 264.7
14.
Folia Parasitol (Praha) ; 632016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27311571

RESUMEN

In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain limitations.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Regulación de la Expresión Génica , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Estadios del Ciclo de Vida/genética
15.
Antimicrob Agents Chemother ; 59(4): 1910-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25583728

RESUMEN

Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm(2)), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm(2)) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm(2)). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compound's effects on the parasite.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , Naftoquinonas/farmacología , Inhibidores de Serina Proteinasa/farmacología , Animales , Antipaína/farmacología , Simulación por Computador , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Serina Endopeptidasas/metabolismo
16.
Exp Parasitol ; 156: 42-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26044356

RESUMEN

Cysteine proteinases (cathepsins) from Leishmania spp. are promising molecular targets against leishmaniasis. Leishmania mexicana cathepsin L is essential in the parasite life cycle and a pivotal in virulence factor in mammals. Natural products that have been shown to display antileishmanial activity were screened as part of our ongoing efforts to design inhibitors against the L. mexicana cathepsin L-like rCPB2.8. Among them, agathisflavone (1), tetrahydrorobustaflavone (2), 3-oxo-urs-12-en-28-oic acid (3), and quercetin (4) showed significant inhibitory activity on rCPB2.8 with IC50 values ranging from 0.43 to 18.03 µM. The mechanisms of inhibition for compounds 1-3, which showed Ki values in the low micromolar range (Ki = 0.14-1.26 µM), were determined. The biflavone 1 and the triterpene 3 are partially noncompetitive inhibitors, whereas biflavanone 2 is an uncompetitive inhibitor. The mechanism of action established for these leishmanicidal natural products provides a new outlook in the search for drugs against Leishmania.


Asunto(s)
Productos Biológicos/farmacología , Catepsina L/antagonistas & inhibidores , Leishmania mexicana/enzimología , Biflavonoides/farmacología , Catepsina B/antagonistas & inhibidores , Catepsina B/genética , Catepsina L/genética , Humanos , Concentración 50 Inhibidora , Cinética , Leishmania mexicana/genética , Quercetina/farmacología , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética
17.
Exp Parasitol ; 149: 32-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25499513

RESUMEN

Leishmania amazonensis undergoes apoptosis-like programmed cell death (PCD) under heat shock conditions. We identified a potential role for inosine 5' monophosphate dehydrogenase (IMPDH) in L. amazonensis PCD. Trypanosomatids do not have a "de novo" purine synthesis pathway, relying on the salvage pathway for survival. IMPDH, a key enzyme in the purine nucleotide pathway, is related to cell growth and apoptosis. Since guanine nucleotide depletion triggers cell cycle arrest and apoptosis in several organisms we analyzed the correlation between IMPDH and apoptosis-like death in L. amazonensis. The L. amazonensis IMPDH inhibition effect on PCD was evaluated through gene expression analysis, mitochondrial depolarization and detection of Annexin-V labeled parasites. We demonstrated a down-regulation of impdh expression under heat shock treatment, which mimics the natural mammalian host infection. Also, IMPDH inhibitors ribavirin and mycophenolic acid (MPA) prevented cell growth and generated an apoptosis-like phenotype in sub-populations of L. amazonensis promastigotes. Our results are in accordance with previous results showing that a subpopulation of parasites undergoes apoptosis-like cell death in the nutrient poor environment of the vector gut. Here, we suggest the involvement of purine metabolism in previously observed apoptosis-like cell death during Leishmania infection.


Asunto(s)
Apoptosis/fisiología , IMP Deshidrogenasa/fisiología , Leishmania mexicana/citología , Animales , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Respuesta al Choque Térmico/fisiología , IMP Deshidrogenasa/antagonistas & inhibidores , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , Leishmania mexicana/crecimiento & desarrollo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos BALB C , Ácido Micofenólico/farmacología , Nucleósidos/farmacología , Nucleótidos de Purina/metabolismo , ARN Protozoario/aislamiento & purificación , Ribavirina/análogos & derivados , Ribavirina/farmacología
18.
Biochem Biophys Res Commun ; 450(2): 936-41, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24984149

RESUMEN

Three structurally distinct forms of phosphoglycerate mutase from the trypanosomatid parasite Leishmania mexicana were isolated by standard procedures of bacterial expression and purification. Analytical size-exclusion chromatography coupled to a multi-angle scattering detector detected two monomeric forms of differing hydrodynamic radii, as well as a dimeric form. Structural comparisons of holoenzyme and apoenzyme trypanosomatid cofactor-independent phosphoglycerate mutase (iPGAM) X-ray crystal structures show a large conformational change between the open (apoenzyme) and closed (holoenzyme) forms accounting for the different monomer hydrodynamic radii. Until now iPGAM from trypanosomatids was considered to be only monomeric, but results presented here show the appearance of a dimeric form. Taken together, these observations are important for the choice of screening strategies to identify inhibitors of iPGAM for parasite chemotherapy and highlight the need to select the most biologically or functionally relevant form of the purified enzyme.


Asunto(s)
Leishmania mexicana/enzimología , Fosfoglicerato Mutasa/química , Apoenzimas/química , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Cristalografía por Rayos X , Holoenzimas/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Especificidad por Sustrato
19.
Biochem J ; 455(1): 119-30, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23909465

RESUMEN

Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.


Asunto(s)
Proteínas Portadoras/química , Coenzima A/química , Cisteína/química , Leishmania mexicana/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Secuencias de Aminoácidos , Biocatálisis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Coenzima A/metabolismo , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Leishmania mexicana/enzimología , Leishmania mexicana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
20.
Exp Parasitol ; 146: 25-33, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25176449

RESUMEN

Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 µM and 60 µM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , Leishmaniasis Cutánea/parasitología , Moduladores de Tubulina/farmacología , Vinblastina/farmacología , Animales , Cricetinae , Resistencia a Medicamentos , Humanos , Leishmania mexicana/ultraestructura , Leishmaniasis Cutánea/patología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Fenotipo , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA