Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849803

RESUMEN

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Asunto(s)
Melia azedarach , Triterpenos Pentacíclicos , Estigmasterol , Triterpenos Pentacíclicos/metabolismo , Estigmasterol/metabolismo , Estigmasterol/aislamiento & purificación , Estigmasterol/química , Melia azedarach/química , Cromatografía Líquida de Alta Presión , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Extractos Vegetales/química , Temperatura , Solventes/química , Lupanos
2.
J Bioenerg Biomembr ; 56(5): 553-561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38918323

RESUMEN

Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2­dipalmitoyl­sn­glycerol­3­phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the Lß'-to-Pß' and Pß'-to-Lα phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Rastreo Diferencial de Calorimetría , Membrana Dobles de Lípidos , Triterpenos Pentacíclicos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , 1,2-Dipalmitoilfosfatidilcolina/química , Espectroscopía Infrarroja por Transformada de Fourier , Membrana Dobles de Lípidos/química , Lupanos
3.
Cytokine ; 183: 156757, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39288647

RESUMEN

OBJECTIVE: Visceral leishmaniasis is a neglected tropical disease that can be lethal if not treated. The available medicines have severe side effects, such as toxicity and drug resistance. Various investigations are looking into new anti-leishmanial compounds from natural products that have little impact on host cells. Lupeol, a triterpenoid present in the flora of many edible plants, has been shown to have antimicrobial properties. The present study investigated the immunomodulatory effects of lupeol on U937 macrophages infected with Leishmania donovani, focusing on the expression of key cytokines and enzymes involved in the immune response. METHODS: U937 macrophages were infected with Leishmania donovani amastigotes and treated with varying concentrations of lupeol throughout three days. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) were measured using real-time polymerase chain reaction (RT-PCR). A positive simulation of gene expression was estimated using ΔΔCT to assess relative expression. RESULTS: The results demonstrated that lupeol significantly upregulated iNOS and TNF-α expression, especially at higher concentrations, indicating enhanced pro-inflammatory and anti-leishmanial activity. Interestingly, IL-10 expression also increased, suggesting a complex immunomodulatory role of lupeol that involves both pro-inflammatory and anti-inflammatory pathways. Pearson correlation analysis revealed a strong association between iNOS and TNF-α (0.97692), as well as a moderate correlation between iNOS and IL-10 (0.51603). CONCLUSION: These findings suggest that lupeol may promote a balanced immune response, enhancing the body's ability to combat L. donovani while potentially mitigating excessive inflammation. Lupeol can potentially serve as a novel therapeutic agent against visceral leishmaniasis.


Asunto(s)
Interleucina-10 , Leishmania donovani , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Triterpenos Pentacíclicos , Factor de Necrosis Tumoral alfa , Leishmania donovani/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células U937 , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/metabolismo , Lupanos
4.
Metab Brain Dis ; 39(1): 77-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129732

RESUMEN

Neuro-oncological and neurodegenerative disorders, represented paradigmatically by glioblastoma and Alzheimer's disease, respectively, persist as formidable challenges in the biomedical realm. The interconnected molecular underpinnings of these conditions necessitate rigorous and novel therapeutic examinations. This comprehensive research was anchored on the premise of unveiling the therapeutic potential and specificity of Lupenone, a potent phytoconstituent, in targeting the molecular pathways underpinning both glioblastoma and Alzheimer's amyloid beta pathology. This was gauged through its interactions with key protein structures, 5H08 and 2ZHV. An integrative approach was adopted, marrying advanced proteomics and modern computer-aided drug design techniques. Molecular docking of Lupenone with 5H08 and 2ZHV was meticulously executed, with subsequent molecular dynamics simulations providing insights into the stability, viability, and intricacies of these interactions. Lupenone demonstrated profound binding affinities, evidenced by robust docking scores of -9.54 kcal/mol for 5H08 and -10.59 kcal/mol for 2ZHV. These interactions underscored Lupenone's eminent therapeutic potential in mitigating glioblastoma and modulating the amyloid beta pathology inherent to Alzheimer's. The introduction of Proteolysis Targeting Chimeras (PROTACs) further magnified the therapeutic prospects, accentuating Lupenone's efficacy. The findings of this study not only underscore the therapeutic acumen of Lupenone in addressing the challenges posed by glioblastoma and Alzheimer's but also lay a strong foundation for its consideration as a leading candidate in future neuro-oncological and neurodegenerative research endeavors. Given the compelling in-silico data, a clarion call is made for its empirical validation in holistic in-vivo settings, potentially pioneering a new therapeutic epoch in both glioblastoma and Alzheimer's interventions.


Asunto(s)
Enfermedad de Alzheimer , Glioblastoma , Lupanos , Humanos , Péptidos beta-Amiloides/metabolismo , Simulación de Dinámica Molecular , Enfermedad de Alzheimer/metabolismo , Glioblastoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular
5.
Metab Brain Dis ; 39(5): 661-678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842663

RESUMEN

This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.


Asunto(s)
Demencia , Modelos Animales de Enfermedad , Metformina , Triterpenos Pentacíclicos , Estreptozocina , Animales , Triterpenos Pentacíclicos/uso terapéutico , Triterpenos Pentacíclicos/farmacología , Metformina/farmacología , Metformina/uso terapéutico , Estreptozocina/toxicidad , Ratones , Demencia/tratamiento farmacológico , Demencia/inducido químicamente , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Aprendizaje por Laberinto/efectos de los fármacos , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Lupanos
6.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792206

RESUMEN

Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene's ring A was modified with two acetyloxy groups in order to possibly boost its cytotoxic activity. The SRB assays' cytotoxicity data showed that conjugates 13-22, derived from betulinic acid, had a significantly higher cytotoxicity. Of these hybrids, derivatives 19 (containing rhodamine B) and 22 (containing rhodamine 101) showed the best values with EC50 = 0.016 and 0.019 µM for A2780 ovarian carcinoma cells. Additionally, based on the ratio of EC50 values, these two compounds demonstrated the strongest selectivity between malignant A2780 cells and non-malignant NIH 3T3 fibroblasts. A375 melanoma cells were used in cell cycle investigations, which showed that the cells were halted in the G1/G0 phase. Annexin V/FITC/PI staining demonstrated that the tumor cells were affected by both necrosis and apoptosis.


Asunto(s)
Apoptosis , Rodaminas , Triterpenos , Triterpenos/química , Triterpenos/farmacología , Triterpenos/síntesis química , Humanos , Rodaminas/química , Ratones , Animales , Línea Celular Tumoral , Células 3T3 NIH , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ácido Betulínico , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/síntesis química , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lupanos
7.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274838

RESUMEN

In the following study, a series of new lupeol-3-carbamate derivatives were synthesized, and the structures of all the newly derived compounds were characterized. The new compounds were screened to determine their anti-proliferative activity against human lung cancer cell line A549, human liver cancer cell line HepG2, and human breast cancer cell line MCF-7. Most of the compounds were found to show better anti-proliferative activity in vitro than lupeol. Among them, obvious anti-proliferation activity (IC50 = 5.39~9.43 µM) was exhibited by compound 3i against all three tumor cell lines. In addition, a salt reaction was performed on compound 3k (IC50 = 13.98 µM) and it was observed that the anti-proliferative activity and water solubility of compound 3k·CH3I (IC50 = 3.13 µM), were significantly enhanced subsequent to the salt formation process. The preliminary mechanistic studies demonstrated that apoptosis in HepG2 cells was induced by compound 3k·CH3I through the inhibition of the PI3K/AKT/mTOR pathway. In conclusion, a series of new lupeol-3-carbamate derivatives were synthesized via the structural modification of the C-3 site of lupeol, thus laying a theoretical foundation for the design of this new anticancer drug.


Asunto(s)
Antineoplásicos , Apoptosis , Carbamatos , Proliferación Celular , Triterpenos Pentacíclicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/síntesis química , Triterpenos Pentacíclicos/química , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Carbamatos/farmacología , Carbamatos/química , Carbamatos/síntesis química , Células Hep G2 , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Células A549 , Células MCF-7 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Lupanos
8.
Plant Foods Hum Nutr ; 79(3): 571-577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795268

RESUMEN

Mexican Coccoloba uvifera fruit contains polyphenols, flavonoids, and anthocyanins, while in the leaves, lupeol, α- and ß-amyrin have been previously identified by HPLC. However, the low resolution by HPLC of pentacyclic triterpenes (PTs) is a limitation. Moreover, the volatile profile of C. uvifera fruit is still unknown. Therefore, this study aimed to identify PTs in C. uvifera leaf and fruit extracts by CG-MS analysis and to determine the volatile profile of C. uvifera pulp by headspace solid-phase microextraction. The results showed trimethylsilylated compounds of standards lupeol, α- and ß-amyrin, indicating that the silylation reaction was suitable. These trimethylsilylated compounds were identified in leaf and fruit extracts. The fruit volatile profile revealed the presence of 278 esters, 20 terpenes, 9 aldehydes, 5 alcohols, and 4 ketones. The fruit showed a high content of esters and terpenes. Due to their flavour properties, esters are essential for the food, cosmetics, and pharmaceutics industries. Moreover, terpenes in the fruit, such as menthone, ß-elemene, junipene, and ß-caryophyllene have the potential as anticancer and phytopathogen agents. The results indicated that GC-MS is an alternative to HPLC approaches for identifying PTs. Besides, identifying volatile compounds in the fruit will increase the value of this plant and expand its application. Identifying PTs and volatile compounds in Mexican C. uvifera leads to a better understanding of the potential benefits of this plant. This would increase the consumption of Mexican C. uvifera fresh or as functional ingredients in nutraceutical or pharmaceutical products.


Asunto(s)
Frutas , Cromatografía de Gases y Espectrometría de Masas , Triterpenos Pentacíclicos , Extractos Vegetales , Hojas de la Planta , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Frutas/química , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Triterpenos Pentacíclicos/análisis , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Ácido Oleanólico/análisis , Ácido Oleanólico/análogos & derivados , México , Lupanos
9.
Chem Biodivers ; 20(4): e202300185, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36960660

RESUMEN

A series of new lupane, ursane, and oleanane type triterpenic A-seco-derivatives containing bromo-, azido-, alkyne-, 1H-tetrazol-5-yl-, 5-methyloxazol-2-yl-, N-(4-(4-methylpiperazin-1-yl)but-2-yn-1-yl), and a carbonyl group at C2, C24, C28, C30 positions has been synthesized. The bioactivity was evaluated by Ellman's method, and the results showed that most of the compounds displayed moderate acetylcholinesterase inhibitory activities in vitro. Among them, A-seco-derivatives of 28-oxo-allobetuline and betulinic acid with bromo- and azido-groups exhibited the most potent inhibitory activity against AChE. Extra experiments showed methyl 2-cyano-3,4-seco-dibromo- and 2-cyano-3,4-seco-diazido-derivatives of betulinic acid as mixed-type inhibitors, with Ki values as low as Ki =0.18 µM and Ki =0.21 µM, respectively.


Asunto(s)
Acetilcolinesterasa , Triterpenos , Estructura Molecular , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Triterpenos/farmacología , Lupanos , Inhibidores de la Colinesterasa/farmacología
10.
Molecules ; 27(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36500355

RESUMEN

Leukemia is one of the most frequent types of cancer. No effective treatment currently exists, driving a search for new compounds. Simple structural modifications were made to novel triterpenes isolated from Phoradendron wattii. Of the three resulting derivatives, 3α-methoxy-24-hydroxylup-20(29)-en-28-oic acid (T1m) caused a decrease in the median inhibitory concentration (IC50) on the K562 cell line. Its mode of action was apparently apoptosis, ROS generation, and loss of mitochondrial membrane potential (MMP). Molecular docking analysis showed T1m to produce lower binding energies than its precursor for the Bcl-2 and EGFR proteins. Small, simple, and viable modifications to triterpenes can improve their activity against leukemia cell lines. T1m is a potentially promising element for future research. Clarifying the targets in its mode of action will improve its applicability.


Asunto(s)
Leucemia , Triterpenos , Humanos , Triterpenos/química , Lupanos , Simulación del Acoplamiento Molecular , Apoptosis , Leucemia/tratamiento farmacológico , Línea Celular Tumoral
11.
J Antibiot (Tokyo) ; 77(1): 50-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935823

RESUMEN

A library of 18 structurally diverse semisynthetic lupane, oleanane, and ursane types triterpenoids, including C19- or C28-(1,2,3-triazolyl)- and aminomethylated derivatives obtained by the «click¼ reaction with various aromatic and sugar azides or by Mannich reaction with secondary amines, were tested for antiviral activity against HCMV, HSV-1, and HPV-11 types. C28-Triazolyl-derivative with a benzyl substituent of 2,3-indolo-oleanolic acid was the most active against the HCMV virus with EC50 < 0.05 (SI > 81). Lupane 3,28-diacetoxy-triazolyl derivatives with phenyl- and fluorophenyl-fragments possess the highest activity among all screened compounds toward HPV-11 type virus with EC50 values of 2.97 µM and 1.20 µM, SI90 values of 28 and >125, respectively. One can see that modification of triterpenic alkynes to Mannich bases was more efficient in increasing an activity against HSV-1 than their conversion to triazoles.


Asunto(s)
Ácido Oleanólico , Triterpenos , Humanos , Citomegalovirus , Ácido Oleanólico/farmacología , Triterpenos/farmacología , Antivirales/farmacología , Lupanos
12.
Phytomedicine ; 123: 155193, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976692

RESUMEN

BACKGROUND: Autoimmune myocarditis, with increasing incidence and limited therapeutic strategies, is in urgent need to explore its underlying mechanisms and effective drugs. Pyroptosis is a programmed cell death that may contribute to the pathogenesis of myocarditis. Nonetheless, no direct evidence validated the role of pyroptosis in autoimmune myocarditis. Lupeol (Lup), a pentacyclic triterpene, possesses various biological activities such as antidiabetic properties. However, the effects of Lup on autoimmune myocarditis and pyroptosis remain unelucidated. PURPOSE: This study aimed to reveal the role of pyroptosis in autoimmune myocarditis and explore the protective effects of Lup, and its engaged mechanisms. METHODS: The experimental autoimmune myocarditis (EAM) mouse model was established by immunization with a fragment of cardiac myosin in Balb/c mice. Lup and MCC950 were administered after EAM induction. The protective effects were assessed by inflammation score, cardiac injury, chronic fibrosis, and cardiac function. Mechanistically, the effects of Lup on the M1 polarization and pyroptosis of macrophages were evaluated. Transcriptome sequencing and molecular docking were subsequently employed, and the underlying mechanisms of Lup were further explored in vitro with small interfering RNA and adenovirus. RESULTS: Administration of Lup and MCC950 alleviated EAM progression. Western blotting and immunofluorescence staining identified macrophages as the primary cells undergoing pyroptosis. Lup inhibited the expression of pyroptosis-associated proteins in macrophages during EAM in a dose-dependent manner. Furthermore, Lup suppressed pyroptosis in both bone marrow-derived macrophages (BMDMs) and THP-1-derived macrophages in vitro. In addition, Lup inhibited the M1 polarization of macrophages both in vivo and in vitro. Mechanistically, the protective effects of Lup were demonstrated via the suppression of the nuclear factor-κΒ (NF-κB) signaling pathway. Transcriptome sequencing and molecular docking revealed the potential involvement of peroxisome proliferator-associated receptor α (PPARα). Subsequently, we demonstrated that Lup activated PPARα to reduce the expression level of LACC1, thereby inhibiting the NF-κB pathway and pyroptosis. CONCLUSION: Our findings indicated the crucial role of macrophage pyroptosis in the pathogenesis of EAM. Lup ameliorated EAM by inhibiting the M1 polarization and pyroptosis of macrophages through the PPARα/LACC1/NF-κB signaling pathway. Thus, our results provided a novel therapeutic target and agent for myocarditis.


Asunto(s)
Enfermedades Autoinmunes , Lupanos , Miocarditis , Ratones , Animales , FN-kappa B/metabolismo , PPAR alfa , Enfermedades Autoinmunes/tratamiento farmacológico , Piroptosis , Simulación del Acoplamiento Molecular , Proliferadores de Peroxisomas/uso terapéutico , Transducción de Señal , Macrófagos , Triterpenos Pentacíclicos/farmacología
13.
J Biomol Struct Dyn ; 42(2): 1072-1078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37139540

RESUMEN

Coronavirus, an extremely contagious infections disease had a harmful effect on the world's population. It is a family of enveloped, single-stranded, positive-strand RNA viruses of Nidovirales order belongs to coroviridae family. At present, worldwide several lakhs of deaths and several billions of infections have been reported. Hence, the focus of the present study was to assess the SARS-CoV-2 enzyme inhibitory potential of certain commercially available terpenoids using Lamarckian genetic algorithm as a working principle and molecular dynamic studies was also performed. AutoDock 4.2 software was used to perform the computational docking calculations of terpenoids against SARS-CoV-2 enzyme. The terpenoids such as, Andrographolide, Betulonic acid, Erythrodiol, Friedelin, Mimuscopic acid, Moronic acid, and Retinol were selected based on the drug likeness properties. Remdesivir a well-known anti-viral drug was selected as the standard drug. Molecular dynamic simulation studies were carried using Desmond module of Schrodinger Suite. In the current study we observed that, Friedelin was exhibited excellent SARS-CoV-2 enzyme inhibitory potential than the standard drug and other selected terpenoids. Friedelin and the standard Remdesivir was undergone the molecular dynamic studies and Friedelin showed a good number of hydrogen bonds over the simulation time of 100 ns. Based on the in silico computational evaluation, it can be concluded that Friedelin could be worthwhile terpenoid against SARS-CoV-2 spike protein. A further study on Friedelin is required to develop a potential chemical entity against the management of COVID disease.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Lupanos , Triterpenos , Humanos , Terpenos/farmacología , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Simulación de Dinámica Molecular , Glicoproteínas , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas
14.
J Agric Food Chem ; 72(7): 3763-3772, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38330914

RESUMEN

The crystal structure of a truncated form of the Lotus japonicus glycogen synthase kinase 3ß (GSK3ß) like kinase (LjSK190-467) has been resolved at 2.9 Å resolution, providing, for the first time, structural data for a plant GKS3ß like kinase. The 3D structure of LjSK190-467 revealed conservation at the structural level for this plant member of the GSK3ß family. However, comparative structural analysis to the human homologue revealed significant differences at the N- and C-termini, supporting the notion for an additional regulatory mechanism in plant GSK3-like kinases. Structural similarities at the catalytic site and the ATP binding site explained the similarity in the function of the human and plant protein. LjSK1 and lupeol are strongly linked to symbiotic bacterial infection and nodulation initiation. An inhibitory capacity of lupeol (IC50 = 0.77 µM) for LjSK1 was discovered, providing a biochemical explanation for the involvement of these two molecules in nodule formation, and constituted LjSK1 as a molecular target for the discovery of small molecule modulators for crop protection and development. Studies on the inhibitory capacity of two phytogenic triterpenoids (betulinic acid and hederacoside C) to LjSK1 provided their structure-activity relationship and showed that hederacoside C can be the starting point for such endeavors.


Asunto(s)
Lotus , Lupanos , Ácido Oleanólico/análogos & derivados , Humanos , Lotus/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo
15.
Chemosphere ; 351: 141149, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218233

RESUMEN

This study utilizes the abundance of pharmacologically active compounds found in natural products and concentrates on the promising anticancer agent lupeol (LUP). The limited water solubility and bioavailability of lupeol have limited its therapeutic utility. To test their potential for treating diabetes and cancer, we synthesized lupeol@chitosan (LUP@CS) nanoparticles encapsulated in cellulose acetate (CA) membranes (LUP@CS/CA). Extensive characterization, including Scanning electron microscopy, Thermogravimetric analysis, X-ray photoelectron spectroscopy, and mechanical strength analysis, confirmed the membrane's structural integrity and drug release capacity. Notably, in vitro experiments utilizing A431 human skin cancer cells revealed remarkable anticancer activity, positioning the membrane as a potential novel therapeutic agent for the treatment of skin cancer. Inhibiting carbohydrate-digesting enzymes effectively, as evidenced by IC50 values as low as 54.56 mg/mL, the membrane also exhibited significant antidiabetic potential. These results demonstrate the multifarious potential of the membrane, which offers promise for both the treatment of skin cancer and the management of diabetes, and has significant implications for nano biological applications.


Asunto(s)
Celulosa/análogos & derivados , Quitosano , Diabetes Mellitus , Lupanos , Nanopartículas , Neoplasias Cutáneas , Humanos , Quitosano/farmacología , Quitosano/química , Hipoglucemiantes/farmacología , Nanopartículas/química
16.
Ann Parasitol ; 70(2): 73-79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044604

RESUMEN

Leishmaniosis is a tropical neglected parasitic disease that is endemic in many countries, including Middle East, with no existing effective vaccines. The bite of female sand-fly transmits the causative agent, Leishmania spp., to humans. High toxicity, resistance and treatment failure of the available chemotherapy against visceral leishmaniosis demands the investigation of new anti-leishmanial compounds. Lupeol is a form of triterpene isolated from several medicinal plants and possesses an antimicrobial property. In this study, cytotoxic effect of lupeol was screened against the mammalian amastigotes form and insect promastigote form of Leishmania donovani, following three cycles of incubation at different concentrations by MTT assay. Results revealed the in vitro anti-leishmanial effect of lupeol on both forms of the parasite where significant decline in promastigotes and amastigotes growth was observed. This was conducted along three times of follow up (24, 48, 72) hours, in comparison to the classical sodium stibogluconate treatment. Cell viability was calculated and the minimum IC50 was detected after 48 hours for amastigotes and 24 hours for promastigotes, 12.125 µM, 102.78 µM, respectively. Given the severity of visceral leishmaniosis and the toxicity of conventional chemotherapies, the anti-leishmanial activity of lupeol suggested a promising compound for additional clinical trials.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Triterpenos Pentacíclicos , Triterpenos Pentacíclicos/farmacología , Leishmania donovani/efectos de los fármacos , Antiprotozoarios/farmacología , Animales , Relación Dosis-Respuesta a Droga , Lupanos
17.
Phytomedicine ; 132: 155777, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943695

RESUMEN

BACKGROUND: Extensive research on Lupeol's potential in cancer prevention highlights its ability to target various cancer-related factors. It regulates proliferative markers, modulates signaling pathways, including PI3K/AKT/mTOR, and influences inflammatory and apoptotic mechanisms. Additionally, Lupeol demonstrates selectivity in killing cancer cells while sparing normal cells, thus minimizing the risk of toxic effects on healthy tissues. HYPOTHESIS: Therefore, we aimed to explore Lupeol's potential roles as a chemotherapeutic agent and as a sensitizer to chemotherapy by reviewing various animal-based studies published on its effects. STUDY DESIGN: We conducted a comprehensive search across databases, including PubMed, PMC, Cochrane, EuroPMC, and ctri.gov.in to identify pertinent articles. Our focus was solely on published animal studies examining Lupeol's anti-cancer effects, with reviewers independently assessing bias risk and resolving discrepancies through consensus. RESULT: 20 studies were shortlisted. The results demonstrated that Lupeol brings changes in the tumor volume by [Hedges's g: -6.62; 95 % CI: -8.68, -4.56; τ2: 24.36, I2: 96.50 %; p < 0.05] and tumor weight by [Hedges's g: -3.97; 95 % CI: -5.20, -2.49; τ2: 2.70, I2: 79.27 %; p <0.05]. The high I2, negative Egger's value, and asymmetrical funnel plot show the publication bias among the studies. Further, Lupeol in combination with other chemotherapeutic agents showed better outcomes as compared to them alone [Hedges's g: -6.38; 95 % CI: -11.82, -0.94; τ2: 46.91; I2: 98.68 %; p <0.05]. Lupeol also targets various signaling molecules and pathways to exert an anti-cancer effect. CONCLUSION: In conclusion, Lupeol significantly reduces tumor volume and weight. Combining Lupeol with other chemotherapy agents shows promise for enhancing anti-cancer effects. However, high variability among studies and evidence of publication bias suggest caution in interpreting results.


Asunto(s)
Neoplasias , Triterpenos Pentacíclicos , Triterpenos Pentacíclicos/farmacología , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lupanos
18.
Neurotoxicology ; 100: 16-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070653

RESUMEN

BACKGROUND: Cannabis sativa L. (C. sativa) can efficiently synthesize of over 200 terpenes, including monoterpenes, sesquiterpenes and triterpenes that may contribute to the known biological activities of phytocannabinoids of relevance for the burgeoning access to medicinal cannabis formulations globally; however, to date have been uncharacterized. We assessed twelve predominant terpenes in C. sativa for neuroprotective and anti-aggregative properties in semi-differentiated PC12 neuronal cell line that is robust and validated as a cell model responsive to amyloid ß (Aß1-42) protein exposure and oxidative stress. METHODS: Cell viability was assessed biochemically using the MTT assay in the presence of myrcene, ß-caryophyllene, terpinolene, limonene, linalool, humulene, α-pinene, nerolidol, ß-pinene, terpineol, citronellol and friedelin (1-200 µM) for 24 hr. Sub-toxic threshold test concentrations of each terpene were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-BHP; 0-250 µM) or amyloid ß (Aß1-42; 0-1 µM) to assess neuroprotective effects. Direct effects of each terpene on Aß fibril formation and aggregation were also evaluated using the Thioflavin T (ThT) fluorometric kinetic assay and transmission electron microscopy (TEM) to visualize fibril and aggregate morphology. RESULTS: Terpenes were intrinsically benign to PC12 cells up to 50 µM, with higher concentrations of ß-caryophyllene, humulene and nerolidol inducing some loss of PC12 cell viability. No significant protective effects of terpenes were observed following t-BHP (0-200 µM) administration, with some enhanced toxicity instead demonstrated from both ß-caryophyllene and humulene treatment (each at 50 µM). α-pinene and ß-pinene demonstrated a significant neuroprotective effect against amyloid ß exposure. α-pinene, ß-pinene, terpineol, terpinolene and friedelin were associated with a variable inhibition of Aß1-42 fibril and aggregate density. CONCLUSIONS: The outcomes of this study underline a neuroprotective role of α-pinene and ß-pinene against Aß-mediated neurotoxicity associated with an inhibition of Aß1-42 fibrilization and density. This demonstrates the bioactive potential of selected terpenes for consideration in the development of medicinal cannabis formulations targeting neurodegenerative diseases.


Asunto(s)
Monoterpenos Bicíclicos , Cannabis , Monoterpenos Ciclohexánicos , Alucinógenos , Lupanos , Marihuana Medicinal , Sesquiterpenos Monocíclicos , Fármacos Neuroprotectores , Sesquiterpenos Policíclicos , Sesquiterpenos , Animales , Ratas , Terpenos/farmacología , Terpenos/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuroprotección , Marihuana Medicinal/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química
19.
Toxicon ; 247: 107838, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971473

RESUMEN

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.


Asunto(s)
Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Fosfolipasas A2 , Fitoquímicos , Hojas de la Planta , Vernonia , Fitoquímicos/farmacología , Fitoquímicos/química , Hojas de la Planta/química , Animales , Vernonia/química , Fosfolipasas A2/farmacología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Naja , Cumarinas/farmacología , Cumarinas/química , Inhibidores de Fosfolipasa A2/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación por Computador , Lupanos
20.
Biomed Pharmacother ; 177: 116942, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889641

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) has a multifactorial and complex pathogenesis. Notably, the disorder of Bile acid (BA) metabolism and lipid metabolism-induced lipotoxicity are the main risk factors of MASLD. Lupeol, traditional regional medicine from Xinjiang, has a long history of use for its anti-inflammatory, anti-tumor, and immune-modulating properties. Recent research suggests its potential as a therapeutic option for MASLD due to its proposed binding capacity to the nuclear BA receptor, Farnesoid X receptor (FXR), hence could represent a therapeutic option for MASLD. In this study, a natural triterpenoid drug lupeol improved BA metabolism and MASLD in mice through the FXR signaling pathway and the gut-liver axis. Furthermore, lupeol effectively restored gut healthiness and improved intestinal immunity, barrier integrity, and inflammation, as indicated by the reconstructed gut flora. Compared with fenofibrate (Feno), lupeol treatment significantly reduced weight gain, fat deposition, and liver injury, decreased serum total cholesterol (TC) and triglyceride (TG) levels, and alleviated hepatic steatosis and liver inflammation. BA analysis showed that lupeol treatment accelerated BA efflux and decreased uptake of BA by increasing hepatic FXR and bile salt export pump (BSEP) expression. Gut microbiota alterations could be related to enhanced fecal BA excretion in lupeol-treated mice. Therefore, consumption of lupeol may prevent HFD-induced MASLD and BA accumulation, possibly via the FXR signaling pathway and regulating the gut microbiota.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Triterpenos Pentacíclicos , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo , Ácidos y Sales Biliares/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Lupanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA