Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.023
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578218

RESUMEN

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Asunto(s)
Fenilalanina , Hojas de la Planta , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Fenilalanina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/parasitología , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetaldehído/farmacología , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Manduca/fisiología
2.
Plant Physiol ; 194(4): 2580-2599, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38101922

RESUMEN

Triterpenes are a class of bioactive compounds with diverse biological functions, playing pivotal roles in plant defense against biotic stressors. Oxidosqualene cyclases (OSCs) serve as gatekeepers in the biosynthesis of triterpenes. In this study, we utilized a Nicotiana benthamiana heterologous expression system to characterize NaOSC1 from Nicotiana attenuata as a multifunctional enzyme capable of synthesizing lupeol, dammarenediol II, 3-alpha,20-lupanediol, and 7 other triterpene scaffolds. We also demonstrated that NaOSC2 is, in contrast, a selective enzyme, producing only the ß-amyrin scaffold. Through virus-induced gene silencing and in vitro toxicity assays, we elucidated the roles of NaOSC1 and NaOSC2 in the defense of N. attenuata against Manduca sexta larvae. Metabolomic and feature-based molecular network analyses of leaves with silenced NaOSC1 and NaOSC2 unveiled 3 potential triterpene glycoside metabolite clusters. Interestingly, features identified as triterpenes within these clusters displayed a significant negative correlation with larval mass. Our study highlights the pivotal roles of NaOSC1 and NaOSC2 from N. attenuata in the initial steps of triterpene biosynthesis, subsequently influencing defense against M. sexta through the modulation of downstream triterpene glycoside compounds.


Asunto(s)
Transferasas Intramoleculares , Manduca , Triterpenos , Animales , Nicotiana/genética , Triterpenos/metabolismo , Triterpenos Pentacíclicos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Larva/metabolismo
3.
Plant Physiol ; 195(2): 911-923, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38466177

RESUMEN

Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.


Asunto(s)
Solanum lycopersicum , Tricomas , Tricomas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación/genética , Herbivoria , Herencia Multifactorial , Manduca/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
4.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666864

RESUMEN

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Asunto(s)
Manduca , Animales , Herbivoria , Insectos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
5.
Dev Biol ; 499: 31-46, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121309

RESUMEN

The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.


Asunto(s)
Sistema Nervioso Entérico , Manduca , Animales , Manduca/metabolismo , Neuronas/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Entérico/metabolismo , Moléculas de Adhesión Celular , Isoformas de Proteínas/metabolismo , Movimiento Celular/fisiología
6.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33561278

RESUMEN

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicósidos/metabolismo , Nicotiana/metabolismo , Monoterpenos Acíclicos/química , Animales , Vías Biosintéticas , Silenciador del Gen , Glicosilación , Glicosiltransferasas/metabolismo , Herbivoria , Larva/fisiología , Manduca/fisiología , Metabolómica , Necrosis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo
7.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873706

RESUMEN

Oxygen availability during development is known to impact the development of insect respiratory and metabolic systems. Drosophila adult tracheal density exhibits developmental plasticity in response to hypoxic or hyperoxic oxygen levels during larval development. Respiratory systems of insects with higher aerobic demands, such as those that are facultative endotherms, may be even more responsive to oxygen levels above or below normoxia during development. The moth Manduca sexta is a large endothermic flying insect that serves as a good study system to start answering questions about developmental plasticity. In this study, we examined the effect of developmental oxygen levels (hypoxia: 10% oxygen, and hyperoxia: 30% oxygen) on the respiratory and metabolic phenotype of adult moths, focusing on morphological and physiological cellular and intercellular changes in phenotype. Mitochondrial respiration rate in permeabilized and isolated flight muscle was measured in adults. We found that permeabilized flight muscle fibers from the hypoxic group had increased mitochondrial oxygen consumption, but this was not replicated in isolated flight muscle mitochondria. Morphological changes in the trachea were examined using confocal imaging. We used transmission electron microscopy to quantify muscle and mitochondrial density in the flight muscle. The respiratory morphology was not significantly different between developmental oxygen groups. These results suggest that the developing M. sexta trachea and mitochondrial respiration have limited developmental plasticity when faced with rearing at 10% or 30% oxygen.


Asunto(s)
Manduca , Mitocondrias , Oxígeno , Tráquea , Animales , Manduca/crecimiento & desarrollo , Manduca/fisiología , Oxígeno/metabolismo , Tráquea/metabolismo , Tráquea/crecimiento & desarrollo , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Larva/crecimiento & desarrollo , Mitocondrias Musculares/metabolismo
8.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873724

RESUMEN

Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.


Asunto(s)
Regulación de la Temperatura Corporal , Vuelo Animal , Larva , Manduca , Oxígeno , Animales , Manduca/fisiología , Manduca/crecimiento & desarrollo , Vuelo Animal/fisiología , Regulación de la Temperatura Corporal/fisiología , Oxígeno/metabolismo , Larva/fisiología , Larva/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/fisiología
9.
PLoS Comput Biol ; 19(6): e1011170, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307288

RESUMEN

Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta. Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates.


Asunto(s)
Manduca , Mariposas Nocturnas , Animales , Músculos , Manduca/fisiología , Potenciales de Acción/fisiología
10.
Dev Biol ; 483: 107-111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007518

RESUMEN

At each molt of Manduca, the large dermal secretory cells expel the protein contents of their vacuoles into the hemocoel. The constellation of proteins expelled at the last larval-pupal molt, however, differs qualitatively from those proteins released at earlier larval-larval molts. Secretory cells at the two stages not only have different lectin staining properties but also have different proteins that separate on two-dimensional gels. Numerous physiological changes accompany the termination of the last larval instar, including increased chitin synthesis, diminished oxygen delivery, and reduced humoral immunity. Secretion of trehalase that is essential for chitin synthesis and the release of hypoxia up-regulated protein to ameliorate oxygen deprivation help ensure normal transition from larva to pupa. Proteins released by dermal secretory cells at this last molt could supplement the diminished immune defenses mediated by fat body and hemocytes at the end of larval life. Additional immune defenses provided by dermal secretory cells could help ensure a safe transition during a period of increased vulnerability for the newly molted pupa with its soft, thin cuticle and reduced mobility.


Asunto(s)
Células Epiteliales/metabolismo , Hemolinfa/metabolismo , Proteínas de Insectos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Muda/inmunología , Pupa/metabolismo , Animales , Quitina/biosíntesis , Epitelio/metabolismo , Hemocitos/metabolismo , Hemolinfa/inmunología , Inmunidad Humoral , Larva/inmunología , Manduca/inmunología , Pupa/inmunología , Vías Secretoras/inmunología , Trehalasa/metabolismo
11.
J Exp Zool B Mol Dev Evol ; 340(3): 270-276, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35676886

RESUMEN

For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.


Asunto(s)
Tamaño Corporal , Insectos , Animales , Hormigas , Drosophila melanogaster , Insectos/crecimiento & desarrollo , Larva , Manduca
12.
New Phytol ; 238(1): 349-366, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36636784

RESUMEN

In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.


Asunto(s)
Manduca , Nicotiana , Animales , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Manduca/fisiología , Interferencia de ARN , Herbivoria/fisiología , Ciclopentanos/metabolismo
13.
J Exp Biol ; 226(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995279

RESUMEN

Many animals use body parts such as tails to stabilize posture while moving at high speed. In flying insects, leg or abdominal inertia can influence flight posture. In the hawkmoth Manduca sexta, the abdomen contributes ∼50% of the total body weight and it can therefore serve to inertially redirect flight forces. How do torques generated by the wings and abdomen interact for flight control? We studied the yaw optomotor response of M. sexta by using a torque sensor attached to their thorax. In response to yaw visual motion, the abdomen moved antiphase with the stimulus, head and total torque. By studying moths with ablated wings and a fixed abdomen, we resolved abdomen and wing torques and revealed their individual contribution to total yaw torque production. Frequency-domain analysis revealed that the abdomen torque is overall smaller than wing torque, although the abdomen torque is ∼80% of the wing torque at higher visual stimulus temporal frequency. Experimental data and modeling revealed that the wing and abdomen torque are transmitted linearly to the thorax. By modeling the thorax and abdomen as a two-link system, we show that abdomen flexion can inertially redirect the thorax to add constructively to wing steering efforts. Our work argues for considering the role of the abdomen in tethered insect flight experiments that use force/torque sensors. Taken together, the hawkmoth abdomen can regulate wing torques in free flight, which could modulate flight trajectories and increase maneuverability.


Asunto(s)
Vuelo Animal , Manduca , Animales , Torque , Fenómenos Biomecánicos , Vuelo Animal/fisiología , Abdomen , Manduca/fisiología , Alas de Animales/fisiología , Insectos
14.
J Exp Biol ; 226(14)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334669

RESUMEN

Although skeletal muscle is a specialized tissue that provides the motor for movement, it also participates in other functions, including the immune response. However, little is known about the effects of this multitasking on muscle. We show that muscle loses some of its capacity while it is participating in the immune response. Caterpillars (Manduca sexta) were exposed to an immune challenge, predator stress or a combination of immune challenge and predator stress. The expression of immune genes (toll-1, domeless, cactus, tube and attacin) increased in body wall muscle after exposure to an immune challenge. Muscle also showed a reduction in the amount of the energy storage molecule glycogen. During an immune challenge, the force of the defensive strike, an important anti-predator behaviour in M. sexta, was reduced. Caterpillars were also less able to defend themselves against a common enemy, the wasp Cotesia congregata, suggesting that the effect on muscle is biologically significant. Our results support the concept of an integrated defence system in which life-threatening events activate organism-wide responses. We suggest that increased mortality from predation is a non-immunological cost of infection in M. sexta. Our study also suggests that one reason non-immunological costs of infection exist is because of the participation of diverse organs, such as muscle, in immunity.


Asunto(s)
Manduca , Avispas , Animales , Manduca/fisiología , Avispas/fisiología , Conducta Predatoria , Músculos , Larva/metabolismo
15.
J Exp Biol ; 226(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37724664

RESUMEN

Hovering hawkmoths expend significant energy while feeding, which should select for greater feeding efficiency. Although increased feeding efficiency has been implicitly assumed, it has never been assessed. We hypothesized that hawkmoths have proboscises specialized for gathering nectar passively. Using contact angle and capillary pressure to evaluate capillary action of the proboscis, we conducted a comparative analysis of wetting and absorption properties for 13 species of hawkmoths. We showed that all 13 species have a hydrophilic proboscis. In contradistinction, the proboscises of all other tested lepidopteran species have a wetting dichotomy with only the distal ∼10% hydrophilic. Longer proboscises are more wettable, suggesting that species of hawkmoths with long proboscises are more efficient at acquiring nectar by the proboscis surface than are species with shorter proboscises. All hawkmoth species also show strong capillary pressure, which, together with the feeding behaviors we observed, ensures that nectar will be delivered to the food canal efficiently. The patterns we found suggest that different subfamilies of hawkmoths use different feeding strategies. Our comparative approach reveals that hawkmoths are unique among Lepidoptera and highlights the importance of considering the physical characteristics of the proboscis to understand the evolution and diversification of hawkmoths.


Asunto(s)
Mariposas Diurnas , Manduca , Animales , Néctar de las Plantas , Humectabilidad , Conducta Alimentaria
16.
J Exp Biol ; 226(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37534841

RESUMEN

The parasitic wasp Cotesia congregata suppresses feeding in its host, the caterpillar Manduca sexta, during specific periods of wasp development. We examined both feeding behaviour and the neurophysiology of the mandibular closer muscle in parasitized and unparasitized control M. sexta to determine how the wasp may accomplish this. To test whether the wasps activated a pre-existing host mechanism for feeding cessation, we examined the microstructure of feeding behaviour in caterpillars that stopped feeding due to illness-induced anorexia or an impending moult. These microstructures were compared with that shown by parasitized caterpillars. While there were overall differences between parasitized and unparasitized caterpillars, the groups showed similar progression in feeding microstructure as feeding ended, suggesting a common pattern for terminating a meal. Parasitized caterpillars also consumed less leaf area in 100 bites than control caterpillars at around the same time their feeding microstructure changed. The decline in food consumption was accompanied by fewer spikes per burst and shorter burst durations in chewing muscle electromyograms. Similar extracellular results were obtained from the motorneuron of the mandibular closer muscle. However, chewing was dramatically re-activated in non-feeding parasitized caterpillars if the connectives posterior to the suboesophageal ganglion were severed. The same result was observed in unparasitized caterpillars given the same treatment. Our results suggest that the reduced feeding in parasitized caterpillars is not due to damage to the central pattern generator (CPG) for chewing, motor nerves or chewing muscles, but is more likely to be due to a suppression of chewing CPG activity by ascending or descending inputs.


Asunto(s)
Manduca , Avispas , Animales , Avispas/fisiología , Manduca/fisiología , Masticación , Conducta Alimentaria/fisiología , Larva/fisiología , Interacciones Huésped-Parásitos/fisiología
17.
Biol Lett ; 19(2): 20220428, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722145

RESUMEN

Traits are often caught in a dynamic tension of countervailing evolutionary pressures. Trade-offs can be imposed by predators evolutionarily curtailing the conspicuousness of a sexually selected trait, or acting in opposition to another natural selection pressure, for instance, a different predator with a divergent hunting strategy. Some moon moths (Saturniidae) have long hindwing tails that thwart echolocating bat attacks at night, allowing the moth to escape. These long tails may come at a cost, however, if they make the moth's roosting form more conspicuous to visually foraging predators during the day. To test this potential trade-off, we offered wild-caught Carolina wrens (Thryothorus ludovicianus) pastry dough models with real Actias luna wings that were either intact or had tails experimentally removed. We video recorded wrens foraging on models and found that moth models with tails did not experience increased detection and attack by birds. Thus, this elaborate trait, while obvious to human observers, does not seem to come at a cost of increased avian predator attention. The evolution of long hindwing tails, likely driven by echolocating predators at night, does not seem to be limited by opposing diurnal constraints. This study demonstrates the importance of testing presumed trade-offs and provides hypotheses for future testing.


Asunto(s)
Quirópteros , Manduca , Pájaros Cantores , Humanos , Animales , Alimentos , Fenotipo
18.
Proc Natl Acad Sci U S A ; 117(38): 23581-23587, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900946

RESUMEN

Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.


Asunto(s)
Hemolinfa , Proteínas de Insectos , Manduca , Serina Proteasas , Animales , Hemolinfa/enzimología , Hemolinfa/inmunología , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Manduca/enzimología , Manduca/inmunología , Manduca/metabolismo , Serina Proteasas/inmunología , Serina Proteasas/metabolismo , Transducción de Señal , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-37119960

RESUMEN

Manduca sexta are endothermic insects, requiring adult thorax temperatures to be elevated above 35 °C for flight muscles to produce the wing beat frequencies necessary for flight. During flight, these animals rely on aerobic production of ATP by flight muscle mitochondria with several potential metabolic pathways providing the fuel. Along with typical carbohydrate substrates, mitochondria of other endothermic insects including bumblebees and wasps can use the amino acid proline or glycerol 3-phosphate (G3P) as metabolic fuel for prewarm up and flight. Here we examine flight muscle mitochondria physiology and the role of temperature and substrates in oxidative phosphorylation from 3-day old adult Manduca sexta. Mitochondria oxygen flux from flight muscle fibers were temperature sensitive with Q10 values ranging from 1.99 to 2.90, with a large increase in LEAK respiration with increased temperature. Mitochondria oxygen flux was stimulated by carbohydrate-based substrates, with flux through Complex I substrates providing the greatest oxygen flux. Neither proline nor G3P produced an increase in oxygen flux of the flight muscle mitochondria. Unlike other endothermic insects, Manduca are unable to supplement carbohydrate oxidation with either proline or G3P entering through Coenzyme Q and rely on substrates entering at complex I and II.


Asunto(s)
Manduca , Animales , Manduca/fisiología , Temperatura , Mitocondrias Musculares/metabolismo , Insectos , Prolina/metabolismo , Oxígeno/metabolismo , Vuelo Animal/fisiología
20.
J Insect Sci ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723233

RESUMEN

The Siberian silk moth, Dendrolimus sibiricus Tschetverikov, is a very serious pest of conifers in Russia and is an emerging threat in North America where an accidental introduction could have devastating impacts on native forest resources. Other Dendrolimus Germar species and related Eurasian lasiocampids in the genus Malacosoma (Hubner) could also present a risk to North America's forests. Foreign vessels entering Canadian and U.S. ports are regularly inspected for Lymantria dispar (Linnaeus) and for the presence of other potentially invasive insects, including suspicious lasiocampid eggs. However, eggs are difficult to identify based on morphological features alone. Here, we report on the development of two TaqMan (Roche Molecular Systems, Inc., Rotkreuz, Switzerland) assays designed to assist regulatory agencies in their identification of these insects. Developed using the barcode region of the cytochrome c oxidase I (COI) gene and run in triplex format, the first assay can detect Dendrolimus and Malacosoma DNA, and can distinguish North American from Eurasian Malacosoma species. The second assay is based on markers identified within the internal transcribed spacer 2 (ITS2) region and was designed to specifically identify D. sibiricus, while discriminating closely related Dendrolimus taxa. In addition to providing direct species identification in the context of its use in North America, the D. sibiricus assay should prove useful for monitoring the spread of this pest in Eurasia, where its range overlaps with those of the morphologically identical D. superans (Butler) and similar D. pini (Linnaeus). The assays described here can be performed either in the lab on a benchtop instrument, or on-site using a portable machine.


Asunto(s)
Bombyx , Manduca , Mariposas Nocturnas , Animales , Canadá , Óvulo , Mariposas Nocturnas/genética , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA