Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 36: 85-114, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692592

RESUMEN

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.


Asunto(s)
Membrana Nuclear/patología , Animales , Inestabilidad Genómica , Humanos , Inmunidad Innata , Micronúcleo Germinal/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo
2.
Nature ; 628(8006): 145-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538785

RESUMEN

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Asunto(s)
Región CA1 Hipocampal , Roturas del ADN de Doble Cadena , Reparación del ADN , Inflamación , Memoria , Receptor Toll-Like 9 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/fisiología , Centrosoma/metabolismo , Disfunción Cognitiva/genética , Condicionamiento Clásico , Matriz Extracelular/metabolismo , Miedo , Inestabilidad Genómica/genética , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Memoria/fisiología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/genética , Neuronas/metabolismo , Neuronas/patología , Membrana Nuclear/patología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
3.
Nature ; 565(7741): 659-663, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675059

RESUMEN

Replicative crisis is a senescence-independent process that acts as a final barrier against oncogenic transformation by eliminating pre-cancerous cells with disrupted cell cycle checkpoints1. It functions as a potent tumour suppressor and culminates in extensive cell death. Cells rarely evade elimination and evolve towards malignancy, but the mechanisms that underlie cell death in crisis are not well understood. Here we show that macroautophagy has a dominant role in the death of fibroblasts and epithelial cells during crisis. Activation of autophagy is critical for cell death, as its suppression promoted bypass of crisis, continued proliferation and accumulation of genome instability. Telomere dysfunction specifically triggers autophagy, implicating a telomere-driven autophagy pathway that is not induced by intrachromosomal breaks. Telomeric DNA damage generates cytosolic DNA species with fragile nuclear envelopes that undergo spontaneous disruption. The cytosolic chromatin fragments activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway and engage the autophagy machinery. Our data suggest that autophagy is an integral component of the tumour suppressive crisis mechanism and that loss of autophagy function is required for the initiation of cancer.


Asunto(s)
Autofagia , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular , Inestabilidad Cromosómica , Autofagia/genética , Puntos de Control del Ciclo Celular , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Cromatina/patología , Inestabilidad Cromosómica/genética , Daño del ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Proteínas de la Membrana/metabolismo , Membrana Nuclear/patología , Nucleotidiltransferasas/metabolismo , Telómero/genética , Telómero/patología
4.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566066

RESUMEN

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología
5.
Circulation ; 146(11): 851-867, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35959657

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS: We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS: Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Células Madre Pluripotentes Inducidas , Placofilinas , Adulto , Animales , Displasia Ventricular Derecha Arritmogénica/patología , Daño del ADN , Humanos , Peróxido de Hidrógeno , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación , Miocitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Oxidantes/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
6.
PLoS Pathog ; 17(8): e1009679, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424922

RESUMEN

It is well established that the herpesvirus nuclear egress complex (NEC) has an intrinsic ability to deform membranes. During viral infection, the membrane-deformation activity of the NEC must be precisely regulated to ensure efficient nuclear egress of capsids. One viral protein known to regulate herpes simplex virus type 2 (HSV-2) NEC activity is the tegument protein pUL21. Cells infected with an HSV-2 mutant lacking pUL21 (ΔUL21) produced a slower migrating species of the viral serine/threonine kinase pUs3 that was shown to be a hyperphosphorylated form of the enzyme. Investigation of the pUs3 substrate profile in ΔUL21-infected cells revealed a prominent band with a molecular weight consistent with that of the NEC components pUL31 and pUL34. Phosphatase sensitivity and retarded mobility in phos-tag SDS-PAGE confirmed that both pUL31 and pUL34 were hyperphosphorylated by pUs3 in the absence of pUL21. To gain insight into the consequences of increased phosphorylation of NEC components, the architecture of the nuclear envelope in cells producing the HSV-2 NEC in the presence or absence of pUs3 was examined. In cells with robust NEC production, invaginations of the inner nuclear membrane were observed that contained budded vesicles of uniform size. By contrast, nuclear envelope deformations protruding outwards from the nucleus, were observed when pUs3 was included in transfections with the HSV-2 NEC. Finally, when pUL21 was included in transfections with the HSV-2 NEC and pUs3, decreased phosphorylation of NEC components was observed in comparison to transfections lacking pUL21. These results demonstrate that pUL21 influences the phosphorylation status of pUs3 and the HSV-2 NEC and that this has consequences for the architecture of the nuclear envelope.


Asunto(s)
Herpes Simple/patología , Herpesvirus Humano 2/fisiología , Membrana Nuclear/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus , Animales , Cápside/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/virología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Células Vero , Proteínas Virales/genética , Ensamble de Virus
7.
Nano Lett ; 22(18): 7724-7733, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35969027

RESUMEN

For more than a century, abnormal nuclei in tumor cells, presenting subnuclear invaginations and folds on the nuclear envelope, have been known to be associated with high malignancy and poor prognosis. However, current nuclear morphology analysis focuses on the features of the entire nucleus, overlooking the malignancy-related subnuclear features in nanometer scale. The main technical challenge is to probe such tiny and randomly distributed features inside cells. We here employ nanopillar arrays to guide subnuclear features into ordered patterns, enabling their quantification as a strong indicator of cell malignancy. Both breast and liver cancer cells were validated as well as the quantification of nuclear abnormality heterogeneity. The alterations of subnuclear patterns were also explored as effective readouts for drug treatment. We envision that this nanopillar-enabled quantification of subnuclear abnormal features in tumor cells opens a new angle in characterizing malignant cells and studying the unique nuclear biology in cancer.


Asunto(s)
Neoplasias , Membrana Nuclear , Recuento de Células , Diferenciación Celular , Núcleo Celular , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Membrana Nuclear/patología
8.
J Virol ; 95(17): e0087321, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133898

RESUMEN

Nuclear envelope budding in herpesvirus nuclear egress may be negatively regulated, since the pUL31/pUL34 nuclear egress complex heterodimer can induce membrane budding without capsids when expressed ectopically or on artificial membranes in vitro, but not in the infected cell. We have previously described a pUL34 mutant that contained alanine substitutions at R158 and R161 and that showed impaired growth, impaired pUL31/pUL34 interaction, and unregulated budding. Here, we determine the phenotypic contributions of the individual substitutions to these phenotypes. Neither substitution alone was able to reproduce the impaired growth or nuclear egress complex (NEC) interaction phenotypes. Either substitution, however, could fully reproduce the unregulated budding phenotype, suggesting that misregulated budding may not substantially impair virus replication. In addition, the R158A substitution caused relocalization of the NEC to intranuclear punctate structures and recruited lamin A/C to these structures, suggesting that this residue might be important for recruitment of kinases for dispersal of nuclear lamins. IMPORTANCE Herpesvirus nuclear egress is a complex, regulated process coordinated by two virus proteins that are conserved among the herpesviruses that form a heterodimeric nuclear egress complex (NEC). The NEC drives budding of capsids at the inner nuclear membrane and recruits other viral and host cell proteins for disruption of the nuclear lamina, membrane scission, and fusion. The structural basis of individual activities of the NEC, apart from membrane budding, are not clear, nor is the basis of the regulation of membrane budding. Here, we explore the properties of NEC mutants that have an unregulated budding phenotype, determine the significance of that regulation for virus replication, and also characterize a structural requirement for nuclear lamina disruption.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Mutación , Lámina Nuclear/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Animales , Chlorocebus aethiops , Herpes Simple/genética , Herpes Simple/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Membrana Nuclear/virología , Lámina Nuclear/patología , Lámina Nuclear/virología , Células Vero , Proteínas Virales/genética , Liberación del Virus
9.
Neurochem Res ; 47(9): 2478-2487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35486254

RESUMEN

The nuclear envelope (NE) separates genomic DNA from the cytoplasm and provides the molecular platforms for nucleocytoplasmic transport, higher-order chromatin organization, and physical links between the nucleus and cytoskeleton. Recent studies have shown that the NE is often damaged by various stresses termed "NE stress", leading to critical cellular dysfunction. Accumulating evidence has revealed the crucial roles of NE stress in the pathology of a broad spectrum of diseases. In the central nervous system (CNS), NE dysfunction impairs neural development and is associated with several neurological disorders, such as Alzheimer's disease and autosomal dominant leukodystrophy. In this review, the structure and functions of the NE are summarized, and the concepts of NE stress and NE stress responses are introduced. Additionally, the significant roles of the NE in the development of CNS and the mechanistic connections between NE stress and neurological disorders are described.


Asunto(s)
Núcleo Celular , Membrana Nuclear , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Sistema Nervioso Central , Citoplasma/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología
10.
J Cell Mol Med ; 25(9): 4298-4306, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33759360

RESUMEN

Regenerative therapeutic approaches involving the transplantation of stem cells differentiated into insulin-producing cells are being studied in patients with rapidly progressing severe diabetes. Adipose-derived mesenchymal stem cells have been reported to have varied cellular characteristics depending on the biological environment of the location from which they were harvested. However, the characteristics of mesenchymal stem cells in type II diabetes have not been clarified. In this study, we observed the organelles of mesenchymal stem cells from patients with type II diabetes under a transmission electron microscope to determine the structure of stem cells in type II diabetes. Transmission electron microscopic observation of mesenchymal stem cells from healthy volunteers (N-ADSC) and those from patients with type II diabetes (T2DM-ADSC) revealed enlarged nuclei and degenerated mitochondrial cristae in T2DM-ADSCs. Moreover, T2DM-ADSCs were shown to exhibit a lower expression of Emerin, a constituent protein of the nuclear membrane, and a decreased level of mitochondrial enzyme activity. In this study, we successfully demonstrated the altered structure of nuclear membrane and the decreased mitochondrial enzyme activity in adipose-derived mesenchymal cells from patients with type II diabetes. These findings have contributed to the understanding of type II diabetes-associated changes in mesenchymal stem cells used for regenerative therapy.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 2/fisiopatología , Células Madre Mesenquimatosas/patología , Mitocondrias/patología , Membrana Nuclear/patología , Adulto , Células Cultivadas , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Membrana Nuclear/metabolismo , Adulto Joven
11.
Nat Mater ; 19(4): 464-473, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31844279

RESUMEN

Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.


Asunto(s)
Daño del ADN , Lamina Tipo A , Distrofia Muscular Animal , Mutación , Miofibrillas , Membrana Nuclear , Animales , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología
12.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299079

RESUMEN

In order to tackle the study of DNA repair pathways, the physical and chemical agents creating DNA damage, the genotoxins, are frequently employed. Despite their utility, their effects are rarely restricted to DNA, and therefore simultaneously harm other cell biomolecules. Methyl methanesulfonate (MMS) is an alkylating agent that acts on DNA by preferentially methylating guanine and adenine bases. It is broadly used both in basic genome stability research and as a model for mechanistic studies to understand how alkylating agents work, such as those used in chemotherapy. Nevertheless, MMS exerts additional actions, such as oxidation and acetylation of proteins. In this work, we introduce the important notion that MMS also triggers a lipid stress that stems from and affects the inner nuclear membrane. The inner nuclear membrane plays an essential role in virtually all genome stability maintenance pathways. Thus, we want to raise awareness that the relative contribution of lipid and genotoxic stresses when using MMS may be difficult to dissect and will matter in the conclusions drawn from those studies.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Daño del ADN , Lípidos/análisis , Metilmetanosulfonato/efectos adversos , Mutágenos/efectos adversos , Membrana Nuclear/patología , Epitelio Pigmentado de la Retina/patología , Reparación del ADN , Células Hep G2 , Humanos , Membrana Nuclear/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos
13.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681887

RESUMEN

Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype-phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.


Asunto(s)
Simulación por Computador , Drosophila melanogaster/metabolismo , Lamina Tipo A/metabolismo , Laminopatías/patología , Distrofias Musculares/patología , Mutación , Sustitución de Aminoácidos , Animales , Preescolar , Drosophila melanogaster/genética , Femenino , Humanos , Lactante , Lamina Tipo A/genética , Laminopatías/genética , Laminopatías/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Fenotipo
14.
J Biol Chem ; 293(23): 8734-8749, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29610273

RESUMEN

G protein-coupled receptors that signal through Gαq (Gq receptors), such as α1-adrenergic receptors (α1-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cß1 (PLCß1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. Despite these common proximal signaling mechanisms, Gq receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, Gq receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction versus IP3-dependent intranuclear calcium required for hypertrophy. Here, we identified subcellular compartmentalization of Gq-receptor signaling as a mechanistic basis for unique Gq receptor-induced hypertrophic phenotypes in cardiac myocytes. We show that α1-ARs co-localize with PLCß1 and PIP2 at the nuclear membrane. Further, nuclear α1-ARs induced intranuclear PLCß1 activity, leading to histone deacetylase 5 (HDAC5) export and a robust transcriptional response (i.e. significant up- or down-regulation of 806 genes). Conversely, we found that angiotensin receptors localize to the sarcolemma and induce sarcolemmal PLCß1 activity, but fail to promote HDAC5 nuclear export, while producing a transcriptional response that is mostly a subset of α1-AR-induced transcription. In summary, these results link Gq-receptor compartmentalization in cardiac myocytes to unique hypertrophic transcription. They suggest a new model of excitation-transcription coupling in adult cardiac myocytes that accounts for differential Gq-receptor localization and better explains distinct physiological functions of Gq receptors.


Asunto(s)
Cardiomegalia/patología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/análisis , Histona Desacetilasas/análisis , Histona Desacetilasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Fenotipo , Fosfatidilinositol 4,5-Difosfato/análisis , Fosfolipasa C beta/análisis , Receptores Adrenérgicos alfa 1/análisis , Sarcolema/metabolismo , Sarcolema/patología , Activación Transcripcional
15.
Biochem Biophys Res Commun ; 511(1): 192-198, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30777327

RESUMEN

Vpx, a virion-associated protein of Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) counteracts host restriction factor SAMDH1 for efficient viral DNA synthesis in the cytoplasm and mediates subsequent nuclear translocation of the viral genome. Vpx was found to be indispensable in the viral infection of terminally differentiated target cells and macaques infected with virions carrying truncated Vpx showed delayed pathogenesis, suggesting multiple roles of Vpx at different steps in the virus life cycle. The current study demonstrates a novel function of SIVsmPBj1.9 Vpx on the integrity of the nuclear envelope in HeLa cells. Results from the Super-Resolution Structured Illumination Microscopy (SR-SIM) analysis showed that Vpx puncta alter HeLa cell nuclear envelope assembly. Furthermore, three-dimensional (3D) SIM analysis of such regions suggests that Vpx is primed in a specific way to disrupt the nuclear envelope integrity. The nuclear incursion of cytoplasmic proteins through Vpx mediated ruptured nuclear envelope regions suggest that these events might play a critical role in the nuclear entry of otherwise cytoplasmically sequestered molecules and theirby may be assisting Vpx functions including the transport of viral genome into the nucleus, which is critical for the establishment of virus infection and pathogenesis.


Asunto(s)
Membrana Nuclear/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología
16.
Exp Cell Res ; 371(2): 353-363, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30149001

RESUMEN

Micronuclei are extra-nuclear bodies containing whole chromosomes that were not incorporated into the nucleus after cell division or damaged chromosome fragments. Even though the link between micronuclei and DNA damage is described for a long time, little is known about the functional organization of micronuclei and their contribution to tumorigenesis. We showed fusions between micronuclear membranes and lysosomes by electron microscopy and linked lysosome function to DNA damage levels in micronuclei. In addition, micronuclei drastically differ from primary nuclei in nuclear envelope composition, with a significant increase in the relative amount of nuclear envelope proteins LBR and emerin and a decrease in nuclear pore proteins. Strikingly, micronuclei lack active proteasomes, as the processing subunits and other factors of the ubiquitin proteasome system. Moreover, micronuclear chromatin shows a higher degree of compaction as compared to primary nuclei. The specific aberrations identified in micronuclei and the potential functional consequences of these defects may contribute to the role of micronuclei in catastrophic genomic rearrangements.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Cromotripsis , Inestabilidad Genómica , Membrana Nuclear/ultraestructura , Complejo de la Endopetidasa Proteasomal/fisiología , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/patología , Cromatina/química , Daño del ADN , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Expresión Génica , Humanos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Fusión de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Micronúcleos , Nocodazol/farmacología , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Receptor de Lamina B
17.
Nature ; 491(7425): 603-7, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23075850

RESUMEN

Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.


Asunto(s)
Proteínas Mutantes/metabolismo , Células-Madre Neurales/patología , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Diferenciación Celular , División Celular , Línea Celular , Células Clonales/metabolismo , Células Clonales/patología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Técnicas de Sustitución del Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Proteínas Mutantes/genética , Mutación , Células-Madre Neurales/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico
18.
Adv Exp Med Biol ; 1112: 31-38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637688

RESUMEN

Double-membrane-bound nucleus is the major organelle of every metazoan cell, which controls various nuclear processes like chromatin maintenance, DNA replication, transcription and nucleoskeleton-cytoskeleton coupling. Nuclear homeostasis depends on the integrity of nuclear membrane and associated proteins. Lamins, underlying the inner nuclear membrane (INM), play a crucial role in maintaining nuclear homeostasis. In this review, we have focussed on the disruption of nuclear homeostasis due to lamin A/C mutation which produces a plethora of diseases, termed as laminopathies.


Asunto(s)
Lamina Tipo A/genética , Mutación , Membrana Nuclear/patología , Núcleo Celular , Citoesqueleto , Homeostasis , Humanos
19.
Nature ; 472(7342): 221-5, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21346760

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Envejecimiento/metabolismo , Envejecimiento/patología , Envejecimiento/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/patología , Envejecimiento Prematuro/fisiopatología , Proteínas de Unión al Calcio/análisis , Diferenciación Celular , Línea Celular , Reprogramación Celular , Senescencia Celular , Proteína Quinasa Activada por ADN/metabolismo , Epigénesis Genética , Fibroblastos/patología , Holoenzimas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lamina Tipo A , Proteínas de Microfilamentos/análisis , Modelos Biológicos , Músculo Liso Vascular/patología , Membrana Nuclear/patología , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Progeria/genética , Progeria/patología , Progeria/fisiopatología , Precursores de Proteínas/análisis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Especificidad por Sustrato , Calponinas
20.
PLoS Genet ; 10(9): e1004605, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25210889

RESUMEN

Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas Nucleares/genética , Animales , Núcleo Celular/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofias Musculares/metabolismo , Mutación/genética , Mioblastos/metabolismo , Mioblastos/patología , Células 3T3 NIH , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA