Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.943
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 180(2): 263-277.e20, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31955845

RESUMEN

Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 mya. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 million years through a process analogous to Darwinian evolution of the genome.


Asunto(s)
Cryptococcus neoformans/genética , Metilación de ADN/genética , Metiltransferasas/genética , Evolución Biológica , Cryptococcus neoformans/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/fisiología , Metilasas de Modificación del ADN/genética , Elementos Transponibles de ADN/genética , Epigenómica/métodos , Evolución Molecular , Genoma/genética , Metiltransferasas/metabolismo , Filogenia
2.
Cell ; 176(5): 1068-1082.e19, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30739798

RESUMEN

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Metilación de ADN/fisiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosina/metabolismo , ADN/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , ARN Polimerasa II/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo
3.
Cell ; 176(1-2): 98-112.e14, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633912

RESUMEN

The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.


Asunto(s)
Neoplasias de la Mama/genética , Metástasis de la Neoplasia/genética , Células Neoplásicas Circulantes/patología , Animales , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Proteína Homeótica Nanog/metabolismo , Metástasis de la Neoplasia/fisiopatología , Células Neoplásicas Circulantes/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
4.
Annu Rev Cell Dev Biol ; 31: 473-496, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26359776

RESUMEN

Epigenetic mechanisms by which cells inherit information are, to a large extent, enabled by DNA methylation and posttranslational modifications of histone proteins. These modifications operate both to influence the structure of chromatin per se and to serve as recognition elements for proteins with motifs dedicated to binding particular modifications. Each of these modifications results from an enzyme that consumes one of several important metabolites during catalysis. Likewise, the removal of these marks often results in the consumption of a different metabolite. Therefore, these so-called epigenetic marks have the capacity to integrate the expression state of chromatin with the metabolic state of the cell. This review focuses on the central roles played by acetyl-CoA, S-adenosyl methionine, NAD(+), and a growing list of other acyl-CoA derivatives in epigenetic processes. We also review how metabolites that accumulate as a result of oncogenic mutations are thought to subvert the epigenetic program.


Asunto(s)
Epigénesis Genética/genética , Epigénesis Genética/fisiología , Acetilcoenzima A/genética , Animales , Cromatina/fisiología , Metilación de ADN/genética , Metilación de ADN/fisiología , Humanos , NAD/genética , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , S-Adenosilmetionina/genética
5.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422875

RESUMEN

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Metilación de ADN/fisiología , Elementos de Facilitación Genéticos/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
6.
Mol Cell ; 71(5): 848-857.e6, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30078725

RESUMEN

A ten-eleven translocation (TET) ortholog exists as a DNA N6-methyladenine (6mA) demethylase (DMAD) in Drosophila. However, the molecular roles of 6mA and DMAD remain unexplored. Through genome-wide 6mA and transcriptome profiling in Drosophila brains and neuronal cells, we found that 6mA may epigenetically regulate a group of genes involved in neurodevelopment and neuronal functions. Mechanistically, DMAD interacts with the Trithorax-related complex protein Wds to maintain active transcription by dynamically demethylating intragenic 6mA. Accumulation of 6mA by depleting DMAD coordinates with Polycomb proteins and contributes to transcriptional repression of these genes. Our findings suggest that active 6mA demethylation by DMAD plays essential roles in fly CNS by orchestrating through added epigenetic mechanisms.


Asunto(s)
Adenina/análogos & derivados , Expresión Génica/fisiología , Neuronas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Adenina/metabolismo , Animales , Metilación de ADN/fisiología , Desmetilación , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Epigénesis Genética/fisiología , Perfilación de la Expresión Génica/métodos , Genoma/fisiología
7.
Hum Mol Genet ; 32(9): 1439-1456, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36458887

RESUMEN

Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is in most cases caused by mutations in either DNA methyltransferase (DNMT)3B, zinc finger and BTB domain containing 24, cell division cycle associated 7 or helicase lymphoid-specific. However, the causative genes of a few ICF patients remain unknown. We, herein, identified ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) as a novel causative gene of one such patient with atypical symptoms. This patient is a compound heterozygote for two previously unreported mutations in UHRF1: c.886C > T (p.R296W) and c.1852C > T (p.R618X). The R618X mutation plausibly caused nonsense-mediated decay, while the R296W mutation changed the higher order structure of UHRF1, which is indispensable for the maintenance of CG methylation along with DNMT1. Genome-wide methylation analysis revealed that the patient had a centromeric/pericentromeric hypomethylation, which is the main ICF signature, but also had a distinctive hypomethylation pattern compared to patients with the other ICF syndrome subtypes. Structural and biochemical analyses revealed that the R296W mutation disrupted the protein conformation and strengthened the binding affinity of UHRF1 with its partner LIG1 and reduced ubiquitylation activity of UHRF1 towards its ubiquitylation substrates, histone H3 and proliferating cell nuclear antigen -associated factor 15 (PAF15). We confirmed that the R296W mutation causes hypomethylation at pericentromeric repeats by generating the HEK293 cell lines that mimic the patient's UHRF1 molecular context. Since proper interactions of the UHRF1 with LIG1, PAF15 and histone H3 are essential for the maintenance of CG methylation, the mutation could disturb the maintenance process. Evidence for the importance of the UHRF1 conformation for CG methylation in humans is, herein, provided for the first time and deepens our understanding of its role in regulation of CG methylation.


Asunto(s)
Histonas , Enfermedades de Inmunodeficiencia Primaria , Humanos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN/genética , ADN/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Células HEK293 , Histonas/genética , Histonas/metabolismo , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Mutación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inestabilidad Cromosómica/genética , Inestabilidad Cromosómica/fisiología , Centrómero/genética , Centrómero/metabolismo , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Cara/anomalías , Genoma Humano/genética , Genoma Humano/fisiología
8.
Nature ; 573(7773): 271-275, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485074

RESUMEN

Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.


Asunto(s)
Ácido Ascórbico/metabolismo , Metilación de ADN/fisiología , Células Germinativas/fisiología , Transcriptoma/fisiología , Animales , Deficiencia de Ácido Ascórbico/fisiopatología , Recuento de Células , Proteínas de Unión al ADN/genética , Epigenómica , Femenino , Mutación con Pérdida de Función , Meiosis/fisiología , Ratones , Modelos Animales , Embarazo , Proteínas Proto-Oncogénicas/genética
9.
Nat Methods ; 18(5): 491-498, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820988

RESUMEN

Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco ( https://github.com/fanglab/nanodisco ), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.


Asunto(s)
Bacterias/genética , Metilación de ADN/fisiología , ADN Bacteriano/genética , Metagenómica/métodos , Secuenciación de Nanoporos , Animales , Microbioma Gastrointestinal , Genoma Bacteriano , Metagenoma , Ratones
10.
Plant Cell ; 33(7): 2183-2196, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33779761

RESUMEN

DNA methylation plays vital roles in repressing transposable element activity and regulating gene expression. The chromatin-remodeling factor Decrease in DNA methylation 1 (DDM1) is crucial for maintaining DNA methylation across diverse plant species, and is required for RNA-directed DNA methylation (RdDM) to maintain mCHH islands in maize (Zea mays). However, the mechanisms by which DDM1 is involved in RdDM are not well understood. In this work, we used chromatin immunoprecipitation coupled with high-throughput sequencing to ascertain the genome-wide occupancy of ZmDDM1 in the maize genome. The results revealed that ZmDDM1 recognized an 8-bp-long GC-rich degenerate DNA sequence motif, which is enriched in transcription start sites and other euchromatic regions. Meanwhile, 24-nucleotide siRNAs and CHH methylation were delineated at the edge of ZmDDM1-occupied sites. ZmDDM1 co-purified with Argonaute 4 (ZmAGO4) proteins, providing further evidence that ZmDDM1 is a component of RdDM complexes in planta. Consistent with this, the vast majority of ZmDDM1-targeted regions co-localized with ZmAGO4-bound genomic sites. Overall, our results suggest a model that ZmDDM1 may be recruited to euchromatic regions via recognition of a GC-rich motif, thereby remodeling chromatin to provide access for RdDM activities in maize.


Asunto(s)
Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Zea mays/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Zea mays/genética
11.
Horm Behav ; 164: 105606, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059233

RESUMEN

Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.


Asunto(s)
Quirópteros , Estaciones del Año , Conducta Sexual Animal , Animales , Masculino , Femenino , Quirópteros/orina , Quirópteros/fisiología , Conducta Sexual Animal/fisiología , Factores de Edad , Metilación de ADN/fisiología , Envejecimiento/orina , Envejecimiento/fisiología , Reproducción/fisiología , Glucocorticoides/orina , Glucocorticoides/metabolismo , Andrógenos/orina
12.
Horm Behav ; 164: 105595, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972246

RESUMEN

Baby schema features are a specific set of physical features-including chubby cheeks, large, low-set eyes, and a large, round head-that have evolutionary adaptive value in their ability to trigger nurturant care. In this study among nulliparous women (N = 81; M age = 23.60, SD = 0.44), we examined how sensitivity to these baby schema features differs based on individual variations in nurturant care motivation and oxytocin system gene methylation. We integrated subjective ratings with measures of facial expressions and electroencephalography (EEG) in response to infant faces that were manipulated to contain more or less pronounced baby schema features. Linear mixed effects analyses demonstrated that infants with more pronounced baby schema features were rated as cuter and participants indicated greater motivation to take care of them. Furthermore, infants with more pronounced baby schema features elicited stronger smiling responses and enhanced P2 and LPP amplitudes compared to infants with less pronounced baby schema features. Importantly, individual differences significantly predicted baby schema effects. Specifically, women with low OXTR methylation and high nurturance motivation showed enhanced differentiation in automatic neurophysiological responses to infants with high and low levels of baby schema features. These findings highlight the importance of considering individual differences in continued research to further understand the complexities of sensitivity to child cues, including facial features, which will improve our understanding of the intricate neurobiological system that forms the basis of caregiving behavior.


Asunto(s)
Metilación de ADN , Electroencefalografía , Expresión Facial , Motivación , Oxitocina , Receptores de Oxitocina , Humanos , Femenino , Motivación/fisiología , Oxitocina/metabolismo , Oxitocina/genética , Metilación de ADN/fisiología , Lactante , Receptores de Oxitocina/genética , Adulto Joven , Adulto , Conducta Materna/fisiología , Conducta del Lactante/fisiología , Masculino , Relaciones Madre-Hijo
13.
Nat Rev Genet ; 19(6): 371-384, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29643443

RESUMEN

Identifying and validating molecular targets of interventions that extend the human health span and lifespan has been difficult, as most clinical biomarkers are not sufficiently representative of the fundamental mechanisms of ageing to serve as their indicators. In a recent breakthrough, biomarkers of ageing based on DNA methylation data have enabled accurate age estimates for any tissue across the entire life course. These 'epigenetic clocks' link developmental and maintenance processes to biological ageing, giving rise to a unified theory of life course. Epigenetic biomarkers may help to address long-standing questions in many fields, including the central question: why do we age?


Asunto(s)
Envejecimiento/fisiología , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Animales , Humanos
14.
Nat Rev Genet ; 19(2): 81-92, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033456

RESUMEN

The DNA methyltransferase (DNMT) family comprises a conserved set of DNA-modifying enzymes that have a central role in epigenetic gene regulation. Recent studies have shown that the functions of the canonical DNMT enzymes - DNMT1, DNMT3A and DNMT3B - go beyond their traditional roles of establishing and maintaining DNA methylation patterns. This Review analyses how molecular interactions and changes in gene copy numbers modulate the activity of DNMTs in diverse gene regulatory functions, including transcriptional silencing, transcriptional activation and post-transcriptional regulation by DNMT2-dependent tRNA methylation. This mechanistic diversity enables the DNMT family to function as a versatile toolkit for epigenetic regulation.


Asunto(s)
Metilación de ADN/fisiología , ADN-Citosina Metilasas/metabolismo , ADN/metabolismo , Epigénesis Genética/fisiología , Procesamiento Postranscripcional del ARN/fisiología , ARN de Transferencia/metabolismo , Activación Transcripcional/fisiología , Animales , Humanos
15.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846253

RESUMEN

DNA hypomethylation is a feature of epidermal cells from aged and sun-exposed skin, but the mechanisms responsible for this methylation loss are not known. Dnmt3a is the dominant de novo DNA methyltransferase in the skin; while epidermal Dnmt3a deficiency creates a premalignant state in which keratinocytes are more easily transformed by topical mutagens, the conditions responsible for this increased susceptibility to transformation are not well understood. Using whole genome bisulfite sequencing, we identified a focal, canonical DNA hypomethylation phenotype in the epidermal cells of Dnmt3a-deficient mice. Single-cell transcriptomic analysis revealed an increased proportion of cells with a proliferative gene expression signature, while other populations in the skin were relatively unchanged. Although total DNMT3A deficiency has not been described in human disease states, rare patients with an overgrowth syndrome associated with behavioral abnormalities and an increased risk of cancer often have heterozygous, germline mutations in DNMT3A that reduce its function (Tatton-Brown Rahman syndrome [TBRS]). We evaluated the DNA methylation phenotype of the skin from a TBRS patient with a germline DNMT3AR882H mutation, which encodes a dominant-negative protein that reduces its methyltransferase function by ∼80%. We detected a focal, canonical hypomethylation phenotype that revealed considerable overlap with hypomethylated regions found in Dnmt3a-deficient mouse skin. Together, these data suggest that DNMT3A loss creates a premalignant epigenetic state associated with a hyperproliferative phenotype in the skin and further suggest that DNMT3A acts as a tumor suppressor in the skin.


Asunto(s)
Metilación de ADN/fisiología , ADN Metiltransferasa 3A/genética , Queratinocitos/metabolismo , Anomalías Múltiples/genética , Adolescente , Animales , Niño , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/metabolismo , Metilasas de Modificación del ADN/metabolismo , Mutación de Línea Germinal , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Queratinocitos/fisiología , Masculino , Metiltransferasas/genética , Ratones , Mutación , Fenotipo , Piel/metabolismo , Síndrome
16.
Genes Dev ; 30(7): 733-50, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036965

RESUMEN

The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.


Asunto(s)
Metilación de ADN/fisiología , Dioxigenasas/metabolismo , Neoplasias/enzimología , Animales , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo
17.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31088843

RESUMEN

Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.


Asunto(s)
Epigénesis Genética/fisiología , Células Madre Pluripotentes/fisiología , Diferenciación Celular/genética , Reprogramación Celular/genética , Metilación de ADN/fisiología , Impresión Genómica/genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Inactivación del Cromosoma X/fisiología
18.
Development ; 147(6)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184271

RESUMEN

Reproductive decline in older female mice can be attributed to a failure of the uterus to decidualise in response to steroid hormones. Here, we show that normal decidualisation is associated with significant epigenetic changes. Notably, we identify a cohort of differentially methylated regions (DMRs), most of which gain DNA methylation between the early and late stages of decidualisation. These DMRs are enriched at progesterone-responsive gene loci that are essential for reproductive function. In female mice nearing the end of their reproductive lifespan, DNA methylation fidelity is lost at a number of CpG islands (CGIs) resulting in CGI hypermethylation at key decidualisation genes. Importantly, this hypermethylated state correlates with the failure of the corresponding genes to become transcriptionally upregulated during the implantation window. Thus, age-associated DNA methylation changes may underlie the decidualisation defects that are a common occurrence in older females. Alterations to the epigenome of uterine cells may therefore contribute significantly to the reproductive decline associated with advanced maternal age.


Asunto(s)
Envejecimiento/genética , Implantación del Embrión/genética , Epigénesis Genética/fisiología , Reproducción/fisiología , Animales , Células Cultivadas , Islas de CpG/genética , Metilación de ADN/fisiología , Decidua/fisiología , Embrión de Mamíferos , Femenino , Masculino , Edad Materna , Ratones , Ratones Endogámicos C57BL , Embarazo , Reproducción/genética
19.
FASEB J ; 36(2): e22153, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34997955

RESUMEN

DNA methylation is an epigenetic modification critical for the regulation of chromatin structure and gene expression during development and disease. The ten-eleven translocation (TET) enzyme family catalyzes the hydroxymethylation and subsequent demethylation of DNA by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Little is known about TET protein function due to a lack of pharmacological tools to manipulate DNA hydroxymethylation levels. In this study, we examined the role of TET-mediated DNA hydroxymethylation during BMP-induced C2C12 osteoblast differentiation using a novel cytosine-based selective TET enzyme inhibitor, Bobcat339 (BC339). Treatment of C2C12 cells with BC339 increased global 5mC and decreased global 5hmC without adversely affecting cell viability, proliferation, or apoptosis. Furthermore, BC339 treatment inhibited osteoblast marker gene expression and decreased alkaline phosphatase activity during differentiation. Methylated DNA immunoprecipitation and bisulfite sequencing showed that inhibition of TET with BC339 led to increased 5mC at specific CpG-rich regions at the promoter of Sp7, a key osteoblast transcription factor. Consistent with promoter 5mC marks being associated with transcriptional repression, luciferase activity of an Sp7-promoter-reporter construct was repressed by in vitro DNA methylation or BC339. Chromatin immunoprecipitation analysis confirmed that TET2 does indeed occupy the promoter region of Sp7. Accordingly, forced overexpression of SP7 rescued the inhibition of osteogenic differentiation by BC339. In conclusion, our data suggest that TET-mediated DNA demethylation of genomic regions, including the Sp7 promoter, plays a role in the initiation of osteoblast differentiation. Furthermore, BC339 is a novel pharmacological tool for the modulation of DNA methylation dynamics for research and therapeutic applications.


Asunto(s)
Diferenciación Celular/fisiología , ADN/metabolismo , Osteoblastos/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Células 3T3 , Animales , Apoptosis/fisiología , Biomarcadores/metabolismo , Línea Celular , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Desmetilación del ADN , Metilación de ADN/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética
20.
Proc Natl Acad Sci U S A ; 117(44): 27365-27373, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077595

RESUMEN

Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.


Asunto(s)
Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Elongación de la Transcripción Genética/fisiología , Proliferación Celular/efectos de los fármacos , Metilación de ADN/fisiología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Epigenómica , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Células-Madre Neurales/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA