Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 123(18): 3133-3142, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39001604

RESUMEN

The powerstroke of human cardiac ß-myosin is an important stage of the cross-bridge cycle that generates force for muscle contraction. However, the starting structure of this process has never been resolved, and the relative timing of the powerstroke and inorganic phosphate (Pi) release is still controversial. In this study, we generated an atomistic model of myosin on the thin filament and utilized metadynamics simulations to predict the absent starting structure of the powerstroke. We demonstrated that the displacement of Pi from the active site during the powerstroke is likely necessary, reducing the energy barrier of the conformation change. The effects of the presence of the thin filament, the hypertrophic cardiomyopathy mutation R712L, and the binding of mavacamten on the powerstroke process were also investigated.


Asunto(s)
Mutación , Fosfatos , Humanos , Fosfatos/metabolismo , Fosfatos/química , Simulación de Dinámica Molecular , Termodinámica , Miosinas Ventriculares/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/química , Modelos Moleculares
2.
Arch Biochem Biophys ; 754: 109961, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38492659

RESUMEN

It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used ß-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.


Asunto(s)
Atrofia Muscular , Miosinas Ventriculares , Ratas , Animales , Miosinas Ventriculares/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
3.
PLoS Comput Biol ; 19(5): e1011099, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200380

RESUMEN

The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human ß-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.


Asunto(s)
Miosinas Cardíacas , Miosinas Ventriculares , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo , Corazón , Miocardio/metabolismo , Miosinas/química , Urea/metabolismo
4.
Biochemistry (Mosc) ; 89(1): 116-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467549

RESUMEN

Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.


Asunto(s)
Actinas , Proteína C , Actinas/metabolismo , Proteína C/metabolismo , Proteínas Portadoras/metabolismo , Calcio/metabolismo , Miosinas Atriales , Miosinas Ventriculares/metabolismo , Miosinas/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Unión Proteica
5.
Biophys J ; 121(12): 2449-2460, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35591788

RESUMEN

Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human ß-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of ß-cardiac myosin contractility.


Asunto(s)
Miosinas Cardíacas , Miosinas Ventriculares , Miosinas Cardíacas/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Miocardio/metabolismo , Miosinas/metabolismo , Fosforilación , Miosinas Ventriculares/análisis , Miosinas Ventriculares/metabolismo
6.
Cell Mol Life Sci ; 78(23): 7309-7337, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704115

RESUMEN

Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly ß-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & ß-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.


Asunto(s)
Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Miosinas Ventriculares/metabolismo , Secuencia de Aminoácidos , Función Atrial/fisiología , Presión Sanguínea/fisiología , Humanos , Miocitos Cardíacos/metabolismo , Miofibrillas/fisiología , Dominios Proteicos , Isoformas de Proteínas , Función Ventricular/fisiología
7.
Am J Physiol Heart Circ Physiol ; 320(5): H1822-H1835, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33666504

RESUMEN

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that influences sarcomere stiffness and modulates cardiac contraction-relaxation through its phosphorylation. Phosphorylation of cMyBP-C and ablation of cMyBP-C have been shown to increase the rate of MgADP release in the acto-myosin cross-bridge cycle in the intact sarcomere. The influence of cMyBP-C on Pi-dependent myosin kinetics has not yet been examined. We investigated the effect of cMyBP-C, and its phosphorylation, on myosin kinetics in demembranated papillary muscle strips bearing the ß-cardiac myosin isoform from nontransgenic and homozygous transgenic mice lacking cMyBP-C. We used quick stretch and stochastic length-perturbation analysis to characterize rates of myosin detachment and force development over 0-12 mM Pi and at maximal (pCa 4.8) and near-half maximal (pCa 5.75) Ca2+ activation. Protein kinase A (PKA) treatment was applied to half the strips to probe the effect of cMyBP-C phosphorylation on Pi sensitivity of myosin kinetics. Increasing Pi increased myosin cross-bridge detachment rate similarly for muscles with and without cMyBP-C, although these rates were higher in muscle without cMyBP-C. Treating myocardial strips with PKA accelerated detachment rate when cMyBP-C was present over all Pi, but not when cMyBP-C was absent. The rate of force development increased with Pi in all muscles. However, Pi sensitivity of the rate force development was reduced when cMyBP-C was present versus absent, suggesting that cMyBP-C inhibits Pi-dependent reversal of the power stroke or stabilizes cross-bridge attachment to enhance the probability of completing the power stroke. These results support a functional role for cMyBP-C in slowing myosin detachment rate, possibly through a direct interaction with myosin or by altering strain-dependent myosin detachment via cMyBP-C-dependent stiffness of the thick filament and myofilament lattice. PKA treatment reduces the role for cMyBP-C to slow myosin detachment and thus effectively accelerates ß-myosin detachment in the intact myofilament lattice.NEW & NOTEWORTHY Length perturbation analysis was used to demonstrate that ß-cardiac myosin characteristic rates of detachment and recruitment in the intact myofilament lattice are accelerated by Pi, phosphorylation of cMyBP-C, and the absence of cMyBP-C. The results suggest that cMyBP-C normally slows myosin detachment, including Pi-dependent detachment, and that this inhibition is released with phosphorylation or absence of cMyBP-C.


Asunto(s)
Proteínas Portadoras/metabolismo , Fuerza Muscular , Contracción Miocárdica , Miocardio/metabolismo , Miosinas Ventriculares/metabolismo , Animales , Fenómenos Biomecánicos , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cinética , Masculino , Ratones Noqueados , Modelos Cardiovasculares , Fosforilación , Unión Proteica
8.
Am J Physiol Heart Circ Physiol ; 320(3): H1112-H1123, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449850

RESUMEN

Comprehensive functional characterization of cardiac tissue includes investigation of length and load dependence. Such measurements have been slow to develop in engineered heart tissues (EHTs), whose mechanical characterizations have been limited primarily to isometric and near-isometric behaviors. A more realistic assessment of myocardial function would include force-velocity curves to characterize power output and force-length loops mimicking the cardiac cycle to characterize work output. We developed a system that produces force-velocity curves and work loops in human EHTs using an adaptive iterative control scheme. We used human EHTs in this system to perform a detailed characterization of the cardiac ß-myosin specific inhibitor, mavacamten. Consistent with the clinically proposed application of this drug to treat hypertrophic cardiomyopathy, our data support the premise that mavacamten improves diastolic function through reduction of diastolic stiffness and isometric relaxation time. Meanwhile, the effects of mavacamten on length- and load-dependent muscle performance were mixed. The drug attenuated the length-dependent response at small stretch values but showed normal length dependency at longer lengths. Peak power output of mavacamten-treated EHTs showed reduced power output as expected but also shifted peak power output to a lower load. Here, we demonstrate a robust method for the generation of isotonic contraction series and work loops in engineered heart tissues using an adaptive-iterative method. This approach reveals new features of mavacamten pharmacology, including previously unappreciated effects on intrinsic myosin dynamics and preservation of Frank-Starling behavior at longer muscle lengths.NEW & NOTEWORTHY We applied innovative methods to comprehensively characterize the length and load-dependent behaviors of engineered human cardiac muscle when treated with the cardiac ß-myosin specific inhibitor mavacamten, a drug on the verge of clinical implementation for hypertrophic cardiomyopathy. We find mechanistic support for the role of mavacamten in improving diastolic function of cardiac tissue and note novel effects on work and power.


Asunto(s)
Bencilaminas/farmacología , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Ingeniería de Tejidos , Uracilo/análogos & derivados , Función Ventricular/efectos de los fármacos , Miosinas Ventriculares/antagonistas & inhibidores , Animales , Línea Celular , Diástole , Humanos , Modelos Cardiovasculares , Fuerza Muscular/efectos de los fármacos , Miocitos Cardíacos/enzimología , Sus scrofa , Técnicas de Cultivo de Tejidos , Andamios del Tejido , Uracilo/farmacología , Miosinas Ventriculares/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 320(2): H881-H890, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337957

RESUMEN

Morbidity and mortality associated with heart disease is a growing threat to the global population, and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+ sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC versus N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed up myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.NEW & NOTEWORTHY Mavacamten is a pharmaceutical that binds to myosin, and it is under investigation as a therapy for some forms of heart disease. We show that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction in skinned myocardial strips from a mouse model of hypertrophic cardiomyopathy that expresses the N47K mutation in cardiac myosin regulatory light chain. Mavacamten reduces contractility by decreasing strong cross-bridge binding, partially due to faster cross-bridge nucleotide handling rates that speed up myosin detachment.


Asunto(s)
Bencilaminas/farmacología , Señalización del Calcio/efectos de los fármacos , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Contracción Miocárdica/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Músculos Papilares/efectos de los fármacos , Uracilo/análogos & derivados , Miosinas Ventriculares/antagonistas & inhibidores , Animales , Cardiomiopatía Hipertrófica/enzimología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Humanos , Cinética , Masculino , Ratones Transgénicos , Mutación , Cadenas Ligeras de Miosina/genética , Músculos Papilares/enzimología , Músculos Papilares/fisiopatología , Uracilo/farmacología , Miosinas Ventriculares/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(35): E8143-E8152, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104387

RESUMEN

Mutations in ß-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human ß-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.


Asunto(s)
Bencilaminas/química , Uracilo/análogos & derivados , Miosinas Ventriculares/química , Animales , Bencilaminas/farmacología , Cardiomegalia/enzimología , Cardiomegalia/genética , Humanos , Músculo Esquelético/enzimología , Mutación , Porcinos , Porcinos Enanos , Uracilo/química , Uracilo/farmacología , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
11.
J Biol Chem ; 294(46): 17314-17325, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578282

RESUMEN

We investigated a dilated cardiomyopathy (DCM) mutation (F764L) in human ß-cardiac myosin by determining its motor properties in the presence and absence of the heart failure drug omecamtive mecarbil (OM). The mutation is located in the converter domain, a key region of communication between the catalytic motor and lever arm in myosins, and is nearby but not directly in the OM-binding site. We expressed and purified human ß-cardiac myosin subfragment 1 (M2ß-S1) containing the F764L mutation, and compared it to WT with in vitro motility as well as steady-state and transient kinetics measurements. In the absence of OM we demonstrate that the F764L mutation does not significantly change maximum actin-activated ATPase activity but slows actin sliding velocity (15%) and the actomyosin ADP release rate constant (25%). The transient kinetic analysis without OM demonstrates that F764L has a similar duty ratio as WT in unloaded conditions. OM is known to enhance force generation in cardiac muscle while it inhibits the myosin power stroke and enhances actin-attachment duration. We found that OM has a reduced impact on F764L ATPase and sliding velocity compared with WT. Specifically, the EC50 for OM induced inhibition of in vitro motility was 3-fold weaker in F764L. Also, OM reduces maximum actin-activated ATPase 2-fold in F764L, compared with 4-fold with WT. Overall, our results suggest that F764L attenuates the impact of OM on actin-attachment duration and/or the power stroke. Our work highlights the importance of mutation-specific considerations when pursuing small molecule therapies for cardiomyopathies.


Asunto(s)
Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Urea/análogos & derivados , Miosinas Ventriculares/genética , Citoesqueleto de Actina/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Adenosina Trifosfatasas/genética , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Humanos , Cinética , Actividad Motora/genética , Mutación , Contracción Miocárdica/efectos de los fármacos , Dominios Proteicos/genética , Urea/farmacología , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo
12.
Mol Cell Biochem ; 469(1-2): 119-132, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32304004

RESUMEN

Pathological cardiac hypertrophy is ultimately accompanied by cardiomyocyte apoptosis. Apoptosis mainly related to calpain-1-mediated apoptotic pathways. Studies had proved that taurine can maintain heart health through antioxidation and antiapoptotic functions, but the effect of taurine on cardiac hypertrophy is still unclear. This study aimed to determine whether taurine could inhibit calpain-1-mediated mitochondria-dependent apoptotic pathways in isoproterenol (ISO)-induced hypertrophic cardiomyocytes. We found that taurine could inhibit the increase in cell surface area and reduce the protein expression levels of the hypertrophic markers atrial natriuretic peptide, brain natriuretic polypeptide, and ß-myosin heavy chain. Taurine also reduced ROS, intracellular Ca2+ overload and mitochondrial membrane potential. Moreover, taurine inhibited cardiomyocyte apoptosis by decreasing the protein expression of calpain-1, Bax, t-Bid, cytosolic cytochrome c, Apaf-1, cleaved caspase-9 and cleaved caspase-3 and by enhancing calpastatin and Bcl-2 protein expression. Calpain-1 small interfering RNA transfection results showed similar antiapoptotic effects as the taurine prevention group. However, compared with the two treatments, taurine inhibited the expression of cleaved caspase-9 more significantly. Therefore, we believe that taurine prevents ISO-induced H9c2 cardiomyocyte hypertrophy by inhibiting oxidative stress, intracellular Ca2+ overload, the calpain-1-mediated mitochondria-dependent apoptotic pathway and cleaved caspase-9 levels.


Asunto(s)
Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Cardiomegalia/metabolismo , Isoproterenol/efectos adversos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacología , Animales , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Factor Natriurético Atrial/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Citocromos c/metabolismo , Isoproterenol/farmacología , Mitocondrias/metabolismo , Miocitos Cardíacos , Péptido Natriurético Encefálico/metabolismo , Péptidos Natriuréticos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Miosinas Ventriculares/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Pflugers Arch ; 471(5): 701-717, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30767072

RESUMEN

Several lines of evidence suggest that the primary effect of hypertrophic cardiomyopathy mutations in human ß-cardiac myosin is hypercontractility of the heart, which leads to subsequent hypertrophy, fibrosis, and myofilament disarray. Here, I describe three perspectives on the molecular basis of this hypercontractility. The first is that hypercontractility results from changes in the fundamental parameters of the actin-activated ß-cardiac myosin chemo-mechanical ATPase cycle. The second considers that hypercontractility results from an increase in the number of functionally accessible heads in the sarcomere for interaction with actin. The final and third perspective is that load dependence of contractility is affected by cardiomyopathy mutations and small-molecule effectors in a manner that changes the power output of cardiac contraction. Experimental approaches associated with each perspective are described along with concepts of therapeutic approaches that could prove valuable in treating hypertrophic cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Contracción Miocárdica , Miosinas Ventriculares/genética , Animales , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Humanos , Mutación , Miosinas Ventriculares/metabolismo
14.
Cardiovasc Diabetol ; 18(1): 13, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696455

RESUMEN

BACKGROUND: The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. METHODS: Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and ß-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of ß-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. RESULTS: RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic ß-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/ß-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of ß-MHC and hence the hypertrophic response. CONCLUSION: Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , MicroARNs/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Transducción de Señal , Factores de Tiempo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
15.
Pak J Pharm Sci ; 31(6(Special)): 2769-2774, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30630781

RESUMEN

Cardiac hypertrophy is a one of common type of CHD, responsible for cardiac mortality worldwide. The present study designed to investigate the effect of muscarinic receptors agonist in the rat model of cardiac hypertrophy. A total of 30 male adult Wistar rats having body weight 300-400 gram were equally distributed in two groups (Test group: Rats with Angiotensin II + M3 receptor agonist [acetylcholine]; Reference group: Rats with cardiac hypertrophy induced by Angiotensin II). Rat model of cardiac hypertrophy were induced by Angiotensin II. Effect of M3 receptor agonist on cardiac hypertrophy was evaluated by electrocardiography, hemodynamic and histological assessment. Also, expression of M3 receptor was analyzed using by real-time-PCR and Western blot analysis. Also, vital signs such as pulse rate, and blood pressure were measured. Echocardiographic related variable including ejection fraction were also assessed in both the groups. The results of this study showed acetylcholine attenuates the hypertrophic response triggered by Angiotensin II, by upregulation of M3 receptor. Upregulation of M3 receptor after administration of acetylcholine ameliorates hypertrophic responses induced by angiotensin II. Also acetylcholine treatment prevents Angiotensin II induced increase in level of ANP and ß-myosin, which are responsible for inducing cardiac hypertrophic responses. Moreover, acetylcholine ameliorates Angiotensin II induced cell enlargement by reducing the surface area of cells. Overall finding suggested that acetylcholine improves left ventricle hypertrophy and ejection fraction by activating M3 receptor in heart. The finding of this study gives the new vision to cardiovascular researchers to develop anti- hypertrophy therapy based on M3 receptor.


Asunto(s)
Acetilcolina/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Angiotensina II , Animales , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Electrocardiografía , Hemodinámica/efectos de los fármacos , Hipertrofia/patología , Masculino , Agonistas Muscarínicos/uso terapéutico , Ratas , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/biosíntesis , Función Ventricular Izquierda/efectos de los fármacos , Miosinas Ventriculares/metabolismo
16.
Cell Physiol Biochem ; 42(4): 1645-1656, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746924

RESUMEN

BACKGROUND/AIMS: Adult cardiomyocytes can re-enter cell cycle as stimulated by prohypertrophic factors although they withdraw from cell cycle soon after birth. p21WAF1/CIP1, a cyclin-dependent kinase inhibitor, has been implicated in cardiac hypertrophy, however, its precise contribution to this process remains largely unclear. METHODS: The gene expression profile in left ventricle (LV) of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats was determined using quantitative PCR array and verified by real-time PCR and Western blotting. Hypertrophic response of H9c2 cells and neonatal rat ventricular myocytes (NRVM) were induced by angiotensin II (1 µmol/L). Cardiac hypertrophy of mice was elicited by isoproterenol (ISO) infusion (40 mg/kg per day for 14 days). p21-adenovirus and p21-siRNA were employed to transfect NRVM, and sterigmatocystin (STE, 3 mg/kg, ip, qd) was used to inhibit p21 activity. mRNA and protein expression levels of α- and ß-myosin heavy chain (MHC), p21WAF1/CIP1, calcineurin (CaN) and atrial natriuretic peptide (ANP) were assayed by realtime PCR and WB, respectively. RESULTS: Sixteen genes showed two-fold or greater changes between SHR and WKY rats, in which the expression of p21WAF1/CIP1 was upregulated by 4.15-fold (P=0.002) and reversed by losartan. Surface area, protein content, mRNA and protein expressions of ß-MHC, ANP and p21WAF1/CIP1 in H9c2 cells treated with AngII elevated significantly compared with control group. p21-Ad transfection markedly increased the surface area and ß-MHC mRNA expression of normal NRVMs, and p21-siRNA transfection decreased them in AngII-treated NRVMs. STE treatment decreased HW/BW and cross-sectional area, expression levels of ß-MHC, ANP and p21 significantly in ISO-treated mice. CONCLUSION: Our findings suggest that p21 facilitates the development of cardiac hypertrophy, and regulating the expression of p21 may be an approach to attenuate hypertrophic growth of cardiomyocytes.


Asunto(s)
Cardiomegalia/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Isoproterenol , Losartán/farmacología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Esterigmatocistina/farmacología , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
17.
Arch Biochem Biophys ; 615: 53-60, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28088328

RESUMEN

Mutations in the human cardiac motor protein beta-myosin heavy chain (ßMHC) have been long recognized as a cause of familial hypertrophic cardiomyopathy. Recently, mutations (P830L and A1004S) in the less abundant but faster isoform alpha-myosin heavy chain (αMHC) have been linked to dilated cardiomyopathy (DCM). In this study, we sought to determine the cellular contractile phenotype associated with these point mutations. Ventricular myocytes were isolated from 2 month male Sprague Dawley rats. Cells were cultured in M199 media and infected with recombinant adenovirus containing the P830L or the A1004S mutant human αMHC at a MOI of 500 for 18 h. Uninfected cells (UI), human ßMHC (MOI 500, 18 h), and human αMHC (MOI 500, 18 h) were used as controls. Cells were loaded with fura-2 (1 µM, 15 min) after 48 h. Sarcomere shortening and calcium transients were recorded in CO2 buffered M199 media (36°±1 C) with and without 10 nM isoproterenol (Iso). The A1004S mutation resulted in decreased peak sarcomere shortening while P830L demonstrated near normal shortening kinetics at baseline. In the presence of Iso, the A1004S sarcomere shortening was identical to the ßMHC shortening while the P830L was identical to the αMHC control. All experimental groups had identical calcium transients. Despite a shared association with DCM, the P830L and A1004S αMHC mutations alter myocyte contractility in completely different ways while at the same preserving peak intracellular calcium.


Asunto(s)
Calcio/metabolismo , Células Musculares/citología , Cadenas Pesadas de Miosina/genética , Animales , Cardiomiopatía Dilatada , Homeostasis , Humanos , Hipertrofia , Isoproterenol/química , Cinética , Masculino , Mutagénesis , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Mutación Puntual , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Sarcómeros/metabolismo , Miosinas Ventriculares/metabolismo
18.
J Neurosci ; 35(23): 8901-13, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063922

RESUMEN

Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.


Asunto(s)
Dinamina I/metabolismo , Neuronas/fisiología , Miosina Tipo IIB no Muscular/metabolismo , Vesículas Sinápticas/metabolismo , Miosinas Ventriculares/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Dinamina I/genética , Estimulación Eléctrica , Endocitosis/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ganglio Cervical Superior/citología , Factores de Tiempo , Miosinas Ventriculares/genética , Miosinas Ventriculares/farmacología
19.
J Cell Physiol ; 231(3): 576-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26205888

RESUMEN

INTRODUCTION: IL-6 influences several biological processes, including cardiac stem cell and cardiomyocyte physiology. Although JAK-STAT3 activation is the defining feature of IL-6 signaling, signaling molecules such as PI3K, PKCs, and ERK1/2 are also activated and elicit different responses. Moreover, most studies on the specific role of these signaling molecules focus on the adult heart, and few studies are available on the biological effects evoked by IL-6 in embryonic cardiomyocytes. AIM: The aim of this study was to clarify the biological response of embryonic heart derived cells to IL-6 by analyzing the morphological modifications and the signaling cascades evoked by the cytokine in H9c2 cells. RESULTS: IL-6 stimulation determined the terminal differentiation of H9c2 cells, as evidenced by the increased expression of cardiac transcription factors (NKX2.5 and GATA4), structural proteins (α-myosin heavy chain and cardiac Troponin T) and the gap junction protein Connexin 43. This process was mediated by the rapid modulation of PI3K, Akt, PTEN, and PKCζ phosphorylation levels. PI3K recruitment was an upstream event in the signaling cascade and when PI3K was inhibited, IL-6 failed to modify PKCζ, PTEN, and Akt phosphorylation. Blocking PKCζ activity affected only PTEN and Akt. Finally, the overexpression of a constitutively active form of PKCζ in H9c2 cells largely mimicked the morphological and molecular effects evoked by IL-6. CONCLUSIONS: This study demonstrated that IL-6 induces the cardiac differentiation of H9c2 embryonic cells though a signaling cascade that involves PI3K, PTEN, and PKCζ activities.


Asunto(s)
Diferenciación Celular/fisiología , Interleucina-6/metabolismo , Miocitos Cardíacos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Activación Enzimática , Miocitos Cardíacos/metabolismo , Ratas , Miosinas Ventriculares/metabolismo
20.
Arch Biochem Biophys ; 601: 105-12, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26792537

RESUMEN

Hypertrophic cardiomyopathy mutations in cardiac troponin T (TnT) lead to sudden cardiac death. Augmented myofilament Ca(2+) sensitivity is a common feature in TnT mutants, but such observations fail to provide a rational explanation for severe cardiac phenotypes. To better understand the mutation-induced effect on the cardiac phenotype, it is imperative to determine the effects on dynamic contractile features such as the muscle length (ML)-mediated activation against α- and ß-myosin heavy chain (MHC) isoforms. α- and ß-MHC are not only differentially expressed in rodent and human hearts, but they also modify ML-mediated activation differently. Mouse analog of human TnTR94L (TnTR97L) or wild-type TnT was reconstituted into de-membranated muscle fibers from normal (α-MHC) and transgenic (ß-MHC) mouse hearts. TnTR97L augmented myofilament Ca(2+) sensitivity by a similar amount in α- and ß-MHC fibers. However, TnTR97L augmented the negative impact of strained crossbridges on other crossbridges (γ) by 22% in α-MHC fibers, but attenuated γ by 21% in ß-MHC fibers. TnTR97L decreased the magnitude of ML-mediated recruitment of crossbridges (ER) by 37% in α-MHC fibers, but increased ER by 35% in ß-MHC fibers. We provide a mechanistic basis for the TnTR97L-induced effects in α- and ß-MHC fibers and discuss the relevance to human hearts.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Mutación , Cadenas Pesadas de Miosina/metabolismo , Troponina T/genética , Adenosina Trifosfatasas/metabolismo , Animales , Cardiomiopatía Hipertrófica/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miofibrillas/metabolismo , Proteínas Recombinantes/metabolismo , Estrés Mecánico , Miosinas Ventriculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA