Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 18(1): 118, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902970

RESUMEN

BACKGROUND: Isoprene is a five-carbon chemical that is an important starting material for the synthesis of rubber, elastomers, and medicines. Although many plants produce huge amounts of isoprene, it is very difficult to obtain isoprene directly from plants because of its high volatility and increasing environmental regulations. Over the last decade, microorganisms have emerged as a promising alternative host for efficient and sustainable bioisoprene production. Isoprene synthase (IspS) has received much attention for the conversion of isoprene from dimethylallyl diphosphate (DMAPP). Herein, we isolated a highly expressible novel IspS gene from Metrosideros polymorpha (MpIspS), which was cloned and expressed in Escherichia coli, using a plant cDNA library and characterized its molecular and biochemical properties. RESULTS: The signal sequence deleted MpIspS was cloned and expressed in E. coli as a 65-kDa monomer. The maximal activity of the purified MpIspS was observed at pH 6.0 and 55 °C in the presence of 5 mM Mn2+. The Km, kcat, and kcat/Km for DMAPP as a substrate were 8.11 mM, 21 min- 1, and 2.59 mM- 1 min- 1, respectively. MpIspS was expressed along with the exogenous mevalonate pathway to produce isoprene in E. coli. The engineered cells produced isoprene concentrations of up to 23.3 mg/L using glycerol as the main carbon source. CONCLUSION: MpIspS was expressed in large amounts in E. coli, which led to increased enzymatic activity and resulted in isoprene production in vivo. These results demonstrate a new IspS enzyme that is useful as a key biocatalyst for bioisoprene production in engineered microbes.


Asunto(s)
Transferasas Alquil y Aril/genética , Myrtaceae/enzimología , Proteínas de Plantas/genética , Transferasas Alquil y Aril/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Butadienos/metabolismo , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Genes de Plantas/genética , Hemiterpenos/metabolismo , Microorganismos Modificados Genéticamente , Myrtaceae/genética , Filogenia , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Alineación de Secuencia
2.
Heredity (Edinb) ; 121(1): 87-104, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29523839

RESUMEN

Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlled by the terpene synthase (TPS) gene family, which is highly diversified throughout the plant kingdom. The plant family Myrtaceae are characterised by especially high terpene concentrations, and considerable variation in terpene profiles. Many Myrtaceae are grown commercially for terpene products including the eucalypts Corymbia and Eucalyptus. Eucalyptus grandis has the largest TPS gene family of plants currently sequenced, which is largely conserved in the closely related E. globulus. However, the TPS gene family has been well studied only in these two eucalypt species. The recent assembly of two Corymbia citriodora subsp. variegata genomes presents an opportunity to examine the conservation of this important gene family across more divergent eucalypt lineages. Manual annotation of the TPS gene family in C. citriodora subsp. variegata revealed a similar overall number, and relative subfamily representation, to that previously reported in E. grandis and E. globulus. Many of the TPS genes were in physical clusters that varied considerably between Eucalyptus and Corymbia, with several instances of translocation, expansion/contraction and loss. Notably, there was greater conservation in the subfamilies involved in primary metabolism than those involved in secondary metabolism, likely reflecting different selective constraints. The variation in cluster size within subfamilies and the broad conservation between the eucalypts in the face of this variation are discussed, highlighting the potential contribution of selection, concerted evolution and stochastic processes. These findings provide the foundation to better understand terpene evolution within the ecologically and economically important Myrtaceae.


Asunto(s)
Transferasas Alquil y Aril/genética , Biología Computacional , Evolución Molecular , Variación Genética , Familia de Multigenes , Myrtaceae/genética , Mapeo Cromosómico , Biología Computacional/métodos , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Anotación de Secuencia Molecular , Myrtaceae/clasificación , Myrtaceae/enzimología , Filogenia , Sitios de Carácter Cuantitativo
3.
BMC Genomics ; 16: 997, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26602763

RESUMEN

BACKGROUND: Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. RESULTS: In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. CONCLUSIONS: This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with the empirically observed capability of M. dubia to synthesize and accumulate AsA and other important molecules, and adds to our current knowledge of the molecular biology and biochemistry of their production in plants. By providing insights into the mechanisms underpinning these metabolic processes, these results can be used to direct efforts to genetically manipulate this organism in order to enhance the production of these bioactive phytochemicals. The accumulation of AsA precursor and discovery of genes associated with their biosynthesis and metabolism in M. dubia is intriguing and worthy of further investigation. The sequences and pathways produced here present the genetic framework required for further studies. Quantitative transcriptomics in concert with studies of the genome, proteome, and metabolome under conditions that stimulate production and accumulation of AsA and their precursors are needed to provide a more comprehensive view of how these pathways for AsA metabolism are regulated and linked in this species.


Asunto(s)
Ácido Ascórbico/biosíntesis , Myrtaceae/genética , Proteínas de Plantas/genética , Transcriptoma , Ácido Ascórbico/genética , Vías Biosintéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Puntos de Control de la Fase M del Ciclo Celular , Anotación de Secuencia Molecular , Myrtaceae/enzimología , Análisis de Secuencia de ARN/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-21636906

RESUMEN

A recombinant form of geraniol dehydrogenase (EC 1.1.1.183) from Backhousia citriodora was overexpressed in Escherichia coli and purified and crystallized by the sitting-drop method using polyethylene glycol 3350 as a precipitant. A data set to 2.3 Šresolution was collected from a monocrystal at 98 K using synchrotron radiation on beamline NE3A of the Photon Factory. The crystals belonged to the orthorhombic group P2(1)2(1)2, with unit-cell parameters a = 125.00, b = 151.01, c = 51.18 Å. The asymmetric unit is expected to contain two BcGEDH molecules, with a corresponding crystal volume per protein weight of 3.1 Å(3) Da(-1) and a solvent content of 60.6%.


Asunto(s)
Myrtaceae/enzimología , Oxidorreductasas/química , Cristalización , Cristalografía por Rayos X
5.
Phytochemistry ; 71(8-9): 844-52, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20399476

RESUMEN

Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives.


Asunto(s)
Transferasas Alquil y Aril , Myrtaceae , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Australia , Secuencia de Bases , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Myrtaceae/enzimología , Myrtaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA