Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 98(1): 121-134, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37798515

RESUMEN

Nanoparticles have been used in neurological research in recent years because of their blood-brain barrier penetration activity. However, their potential neuronanotoxicity remains a concern. In particular, microglia, which are resident phagocytic cells, are mainly exposed to nanoparticles in the brain. We investigated the changes in lysosomal function in silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)]-treated BV2 murine microglial cells. In addition, we analyzed amyloid beta (Aß) accumulation and molecular changes through the integration of transcriptomics, proteomics, and metabolomics (triple-omics) analyses. Aß accumulation significantly increased in the 0.1 µg/µl MNPs@SiO2(RITC)-treated BV2 cells compared to the untreated control and 0.01 µg/µl MNPs@SiO2(RITC)-treated BV2 cells. Moreover, the MNPs@SiO2(RITC)-treated BV2 cells showed lysosomal swelling, a dose-dependent reduction in proteolytic activity, and an increase in lysosomal swelling- and autophagy-related protein levels. Moreover, proteasome activity decreased in the MNPs@SiO2(RITC)-treated BV2 cells, followed by a concomitant reduction in intracellular adenosine triphosphate (ATP). By employing triple-omics and a machine learning algorithm, we generated an integrated single molecular network including reactive oxygen species (ROS), autophagy, lysosomal storage disease, and amyloidosis. In silico analysis of the single triple omics network predicted an increase in ROS, suppression of autophagy, and aggravation of lysosomal storage disease and amyloidosis in the MNPs@SiO2(RITC)-treated BV2 cells. Aß accumulation and lysosomal swelling in the cells were alleviated by co-treatment with glutathione (GSH) and citrate. These findings suggest that MNPs@SiO2(RITC)-induced reduction in lysosomal activity and proteasomes can be recovered by GSH and citrate treatment. These results also highlight the relationship between nanotoxicity and Aß accumulation.


Asunto(s)
Amiloidosis , Enfermedades por Almacenamiento Lisosomal , Nanopartículas de Magnetita , Ratones , Animales , Microglía , Péptidos beta-Amiloides , Dióxido de Silicio/toxicidad , Nanopartículas de Magnetita/toxicidad , Especies Reactivas de Oxígeno , Lisosomas , Citratos
2.
Environ Toxicol ; 39(3): 1175-1186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860912

RESUMEN

Magnetite nanoparticles (MNPs) have been extensively detected in the atmospheric environment and implicated as a prominent threat to atherosclerosis, a chronic vascular inflammatory disease. Due to globalization and economic development, the dramatic shift in diet from traditional to high-fat dietary patterns aggravated atherosclerosis progression induced by environmental factors. However, limited knowledge is available regarding vascular risks and underlying mechanisms of airborne MNPs in high-risk populations with high-fat dietary habits. Herein, we demonstrated that MNPs exerted a proatherogenic effect under high-fat dietary patterns, leading to aortic wall thickening, elastic fiber disorganization, macrophage infiltration, and local inflammation. Based on the correlation analysis between MNPs and PM group, we identified that MNPs might be a key PM component in atherogenic toxicity. MNPs exposure disturbed the dynamic process of lipid metabolism, manifested as aortic lipid accumulation, dyslipidemia, and hepatic lipid metabolism disorder, which was modulated by the JAK-STAT pathway. Overall, these findings provide new insight into understanding the cardiovascular risks and mechanisms of MNPs among high-risk populations.


Asunto(s)
Aterosclerosis , Nanopartículas de Magnetita , Humanos , Metabolismo de los Lípidos , Nanopartículas de Magnetita/toxicidad , Patrones Dietéticos , Quinasas Janus , Transducción de Señal , Factores de Transcripción STAT
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928164

RESUMEN

Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.


Asunto(s)
Embrión no Mamífero , Óxido Ferrosoférrico , Neurogénesis , Pez Cebra , Animales , Pez Cebra/embriología , Neurogénesis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Apoptosis/efectos de los fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad
4.
Toxicol Ind Health ; 39(3): 158-168, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36760134

RESUMEN

Lithium, which has a high industrial value, is an environmental pollutant of concern to those who work with lithium in industry as well as to the general public. Biological parameters such as MDA, 8-OHdG, apoptosis (caspase-3), and acetylcholinesterase (AChE) were studied to determine the toxic effects on the brain tissue of the model organism (Carassius auratus) exposed to high dose lithium. According to the results obtained, it was found that lithium exposure caused oxidative stress with an increase in MDA level over time and, accordingly, DNA damage and apoptosis occured in brain tissue. It was also found that a decrease in AChE activity was observed, and the high levels of MDA, 8-OHdG, and caspase-3 activity obtained in brain tissue supported this result. The solid phase extraction (SPE) method was used to effectively remove lithium, which has unfavorable effects on living organisms, from aqueous solutions. In this method, a sawdust loaded with magnetite nanoparticles (MNLS) was prepared as an adsorbent for solid phase extraction by a simple method, and it was characterized. Optimal conditions for the SPE process were defined and it was found that lithium could be removed from solution onto the MNLS surface with a high yield of about 96%. The results of the study are crucial for proposing a simple and applicable high performance method.


Asunto(s)
Litio , Nanopartículas de Magnetita , Animales , Caspasa 3 , Nanopartículas de Magnetita/toxicidad , Acetilcolinesterasa/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Encéfalo , Agua , Extracción en Fase Sólida/métodos , Apoptosis
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674650

RESUMEN

The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of magnetite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltriethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration range (10−15−1 g/L). Under the conditions of model oxidative stress and higher concentrations of MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis phenomenon based on iron-initiated cell-membrane lipid peroxidation.


Asunto(s)
Nanopartículas de Magnetita , Especies Reactivas de Oxígeno , Nanopartículas de Magnetita/toxicidad , Nanopartículas de Magnetita/química , Bacterias , Oxidantes
6.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768890

RESUMEN

A major drawback of nanoparticles (NPs) for biomedical applications is their preferential phagocytosis in immune cells, which can be avoided by surface modifications like PEGylation. Nevertheless, examinations of different polyethylene glycol (PEG) chain lengths on the competence of immune cells as well as possible immunotoxic effects are still sparse. Therefore, primary murine macrophages and dendritic cells were generated and incubated with magnetic nanoporous silica nanoparticles (MNPSNPs) modified with different mPEG chains (2 kDa, 5 kDa, and 10 kDa). Cytotoxicity, cytokine release, and the formation of reactive oxygen species (ROS) were determined. Immune competence of both cell types was examined and uptake of MNPSNPs into macrophages was visualized. Concentrations up to 150 µg/mL MNPSNPs showed no effects on the metabolic activity or immune competence of both cell types. However, ROS significantly increased in macrophages incubated with larger PEG chains, while the concentration of cytokines (TNF-α and IL-6) did not indicate a proinflammatory process. Investigations on the uptake of MNPSNPs revealed no differences in the onset of internalization and the intensity of intracellular fluorescence. The study gives no indication for an immunotoxic effect of PEGylated MNPSNPs. Nevertheless, there is still a need for optimization regarding their internalization to ensure an efficient drug delivery.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Animales , Ratones , Nanopartículas de Magnetita/toxicidad , Especies Reactivas de Oxígeno/farmacología , Polietilenglicoles/farmacología , Macrófagos , Citocinas/farmacología , Células Dendríticas
7.
J Nanobiotechnology ; 20(1): 535, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528614

RESUMEN

Magnetic nanoparticles are widely used in biomedicine for MRI imaging and anemia treatment. The aging of these nanomaterials in vivo may lead to gradual diminishing of their contrast properties and inducing toxicity. Here, we describe observation of the full lifecycle of 40-nm magnetic particles from their injection to the complete degradation in vivo and associated impact on the organism. We found that in 2 h the nanoparticles were eliminated from the bloodstream, but their initial biodistribution changed over time. In 1 week, a major part of the nanoparticles was transferred to the liver and spleen, where they degraded with a half-life of 21 days. MRI and a magnetic spectral approach revealed preservation of contrast in these organs for more than 1 month. The particle degradation led to the increased number of red blood cells and blood hemoglobin level due to released iron without causing any toxicity in tissues. We also observed an increase in gene expression level of Fe-associated proteins such as transferrin, DMT1, and ferroportin in the liver in response to the iron particle degradation. A deeper understanding of the organism response to the particle degradation can bring new directions to the field of MRI contrast agent design.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas de Magnetita/toxicidad , Distribución Tisular , Magnetismo , Hierro , Imagen por Resonancia Magnética/métodos , Biotransformación , Medios de Contraste
8.
J Appl Toxicol ; 42(7): 1230-1252, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35088439

RESUMEN

As nanoparticles (NPs) can access the brain and impact on CNS function, novel in vitro models for the evaluation of NPs-induced neurotoxicity are advocated. Three-dimensional spheroids of primary neuron-like cells (hNLCs) of human origin have been generated, from differentiation of human umbilical cord mesenchymal stem cells (MSCs). The study evaluated Fe3 O4 NP impact on the differentiation process by applying the challenge at complete 3D hNLC spheroid formation (after 4 days, T4) or at beginning of neurogenic induction/simultaneously 3D forming (T0). Different endpoints were monitored over time (up to 10 days): spheroid growth, size, morphology, ATP, cell death, neuronal markers (ß-Tub III, MAP-2, and NSE), NP uptake. At T0 application, a marked concentration- and time-dependent cell mortality occurred: effect started early (day 2) and low concentration (1 µg/ml) and exacerbated (80% mortality) after prolonged time (day 6) and increased concentrations (50 µg/ml). ATP was strikingly affected. All neuronal markers were downregulated, and spheroid morphology altered in a concentration-dependent manner (from ≥5 µg/ml) after day 2. Fe3 O4 NPs applied at complete 3D formation (T4) still induced adverse effects although less severe: cell mortality (20-60%) and ATP content decrease (10-40%) were observed in a concentration-dependent manner (from ≥ 5 µg/ml). A neuronal-specific marker effect and spheroid size reduction from 25 µg/ml without morphology alteration were evidenced. This finding provides additional information on neurotoxic effects of Fe3 O4 NPs in a new 3D hNLC spheroid model derived from MSCs that could find a consistent application as in a testing strategy serving in first step hazard identification for correct risk assessment.


Asunto(s)
Nanopartículas de Magnetita , Células Madre Mesenquimatosas , Adenosina Trifosfato/metabolismo , Técnicas de Cultivo de Célula/métodos , Humanos , Nanopartículas de Magnetita/toxicidad , Neuronas , Esferoides Celulares
9.
Andrologia ; 54(11): e14613, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36216500

RESUMEN

Magnetite nanoparticles (MNPs) are the most conventional type of iron oxide nanoparticles used in the food industrial processes, removal of heavy metals, and biomedical applications in vivo or in vitro. Until now, there is no sufficient information that can confirm its effect on the body's immune system and reproductive health in males. The purpose of this research is to estimate the immunotoxic and reproductive toxic effects of MNPs in male rats. This study included 36 adult male albino rats divided into three groups. The experimental groups were intraperitoneally injected with MNPs at doses of 5 and 10 mg/kg body weight 3 times/week for 60 days, while the control group was injected with saline solution. MNPs caused a significant decrease in the body weight change of the high-treated group. MNPs produced changes in the lymphocyte proliferation rate which referred to a significant immunotoxic effect measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide reduction method. The testicular tissue of male-treated rats showed some moderate and severe degenerative changes. The sperm parameters of count, motility, and viability were significantly decreased. Sperm morphological abnormalities were detected in all treated animals. MNPs produced a significant decrease in testosterone levels, increased the level of malondialdehyde, impaired the activity of the antioxidant enzymes and induced testicular DNA damage. In conclusion, MNPs affected the normal immune state in male rats and facilitated the generation of reactive oxygen species subsequently triggering testicular oxidative stress damages. All these consequences had a negative impact on male reproductive health.


Asunto(s)
Nanopartículas de Magnetita , Animales , Masculino , Peso Corporal , Nanopartículas de Magnetita/toxicidad , Estrés Oxidativo , Semen , Motilidad Espermática , Espermatozoides , Testículo , Ratas
10.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957262

RESUMEN

The diagnosis of the dynamics, accumulation, and engraftment of transplanted stem cells in vivo is essential for ensuring the safety and the maximum therapeutic effect of regenerative medicine. However, in vivo imaging technologies for detecting transplanted stem cells are not sufficient at present. We developed nanohybrid particles composed of dendron-baring lipids having two unsaturated bonds (DLU2) molecules, quantum dots (QDs), and magnetic nanoparticles in order to diagnose the dynamics, accumulation, and engraftment of transplanted stem cells, and then addressed the labeling and in vivo fluorescence and magnetic resonance (MR) imaging of stem cells using the nanohybrid particles (DLU2-NPs). Five kinds of DLU2-NPs (DLU2-NPs-1-5) composed of different concentrations of DLU2 molecules, QDs525, QDs605, QDs705, and ATDM were prepared. Adipose tissue-derived stem cells (ASCs) were labeled with DLU2-NPs for 4 h incubation, no cytotoxicity or marked effect on the proliferation ability was observed in ASCs labeled with DLU2-NPs (640- or 320-fold diluted). ASCs labeled with DLU2-NPs (640-fold diluted) were transplanted subcutaneously onto the backs of mice, and the labeled ASCs could be imaged with good contrast using in vivo fluorescence and an MR imaging system. DLU2-NPs may be useful for in vivo multimodal imaging of transplanted stem cells.


Asunto(s)
Nanopartículas de Magnetita , Puntos Cuánticos , Animales , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/toxicidad , Ratones , Imagen Multimodal , Puntos Cuánticos/química , Células Madre
11.
Nanotechnology ; 33(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34598165

RESUMEN

Phenolic compounds (like 4-nitrophenol) and dyes (like methyl orange) are common by-products discharged by many industries as wastes; they are toxic and may induce discomfort and irritation in humans when ingested. Most of these compounds can be made less toxic through catalytic degradation. Metal oxide nanoparticles are found to have high catalytic activity and can degrade toxic phenolic compounds and dyes. In the current study, pomegranate rind extract was used for the green synthesis of iron oxide nanoparticles that exhibited an octahedron morphology revealed by scanning electron microscopy analysis. Energy dispersive x-ray analysis showed 47.96% content of Fe (by weight); high resolution-transmission electron microscopy analysis confirmed that the nanoparticles had a particle size of 22.54 ± 4.13 nm. The particles were further characterized by x-ray diffraction, fourier transform-infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis. The nanoparticle proved to be efficient in reducing 4-nitrophenol and methyl orange. It was also found to be non-toxic towards murine macrophages, RAW 264.7 with good ROS-scavenging potential compared to control.


Asunto(s)
Depuradores de Radicales Libres , Tecnología Química Verde/métodos , Nanopartículas de Magnetita , Extractos Vegetales , Granada (Fruta)/química , Animales , Supervivencia Celular/efectos de los fármacos , Colorantes , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Ratones , Nitrofenoles/análisis , Nitrofenoles/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Células RAW 264.7 , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
12.
Part Fibre Toxicol ; 18(1): 30, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384435

RESUMEN

BACKGROUND: Nanoparticles have been studied for brain imaging, diagnosis, and drug delivery owing to their versatile properties due to their small sizes. However, there are growing concerns that nanoparticles may exert toxic effects in the brain. In this study, we assessed direct nanotoxicity on microglia, the resident macrophages of the central nervous system, and indirect toxicity on neuronal cells exerted by silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)]. METHODS: We investigated MNPs@SiO2(RITC)-induced biological changes in BV2 murine microglial cells via RNA-sequencing-based transcriptome analysis and gas chromatography-mass spectrometry-based intracellular and extracellular amino acid profiling. Morphological changes were analyzed by transmission electron microscopy. Indirect effects of MNPs@SiO2(RITC) on neuronal cells were assessed by Transwell-based coculture with MNPs@SiO2(RITC)-treated microglia. MNPs@SiO2(RITC)-induced biological changes in the mouse brain in vivo were examined by immunohistochemical analysis. RESULTS: BV2 murine microglial cells were morphologically activated and the expression of Iba1, an activation marker protein, was increased after MNPs@SiO2(RITC) treatment. Transmission electron microscopy analysis revealed lysosomal accumulation of MNPs@SiO2(RITC) and the formation of vesicle-like structures in MNPs@SiO2(RITC)-treated BV2 cells. The expression of several genes related to metabolism and inflammation were altered in 100 µg/ml MNPs@SiO2(RITC)-treated microglia when compared with that in non-treated (control) and 10 µg/ml MNPs@SiO2(RITC)-treated microglia. Combined transcriptome and amino acid profiling analyses revealed that the transport of serine family amino acids, including glycine, cysteine, and serine, was enhanced. However, only serine was increased in the growth medium of activated microglia; especially, excitotoxic D-serine secretion from primary rat microglia was the most strongly enhanced. Activated primary microglia reduced intracellular ATP levels and proteasome activity in cocultured neuronal cells, especially in primary cortical neurons, via D-serine secretion. Moreover, ubiquitinated proteins accumulated and inclusion bodies were increased in primary dopaminergic and cortical neurons cocultured with activated primary microglia. In vivo, MNPs@SiO2(RITC), D-serine, and ubiquitin aggresomes were distributed in the MNPs@SiO2(RITC)-treated mouse brain. CONCLUSIONS: MNPs@SiO2(RITC)-induced activation of microglia triggers excitotoxicity in neurons via D-serine secretion, highlighting the importance of neurotoxicity mechanisms incurred by nanoparticle-induced microglial activation.


Asunto(s)
Nanopartículas de Magnetita , Dióxido de Silicio , Animales , Magnetismo , Nanopartículas de Magnetita/toxicidad , Ratones , Microglía , Ratas , Serina , Dióxido de Silicio/toxicidad
13.
J Nanobiotechnology ; 19(1): 308, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627267

RESUMEN

In Asia, including Taiwan, malignant tumors such as Hepatocellular carcinoma (HCC) one of the liver cancer is the most diagnosed subtype. Magnetic resonance imaging (MRI) has been a typical diagnostic method for accurately diagnosing HCC. When it is difficult to demonstrate non-enhanced MRI of tumors, radiologists can use contrast agents (such as Gd3+, Fe3O4, or FePt) for T1-weighted and T2-weighted imaging remain in the liver for a long time to facilitate diagnosis via MRI. However, it is sometimes difficult for T2-weighted imaging to detect small tumor lesions because the liver tissue may absorb iron ions. This makes early cancer detection a challenging goal. This challenge has prompted current research to create novel nanocomposites for enhancing the noise-to-signal ratio of MRI. To develop a method that can more efficiently diagnose and simultaneously treat HCC during MRI examination, we designed a functionalized montmorillonite (MMT) material with a porous structure to benefit related drugs, such as mitoxantrone (MIT) delivery or as a carrier for the FePt nanoparticles (FePt NPs) to introduce cancer therapy. Multifunctional FePt@MMT can simultaneously visualize HCC by enhancing MRI signals, treating various diseases, and being used as an inducer of magnetic fluid hyperthermia (MFH). After loading the drug MIT, FePt@MMT-MIT provides both MFH treatment and chemotherapy in one nanosystem. These results ultimately prove that functionalized FePt@MMT-MIT could be integrated as a versatile drugs delivery system by combining with MRI, chemotheraeutic drugs, and magnetic guide targeting.


Asunto(s)
Carcinoma Hepatocelular , Portadores de Fármacos , Neoplasias Hepáticas , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Animales , Bentonita/química , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Medios de Contraste/química , Medios de Contraste/toxicidad , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Masculino , Ratones , Platino (Metal)/química , Nanomedicina Teranóstica
14.
J Nanobiotechnology ; 19(1): 358, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736483

RESUMEN

Sonodynamic therapy (SDT), presenting spatial and temporal control of ROS generation triggered by ultrasound field, has attracted considerable attention in tumor treatment. However, its therapeutic efficacy is severely hindered by the intrinsic hypoxia of solid tumor and the lack of smart design in material band structure. Here in study, fine α-Fe2O3 nanoparticles armored with Pt nanocrystals (α-Fe2O3@Pt) was investigated as an alternative SDT agent with ingenious bandgap and structural design. The Schottky barrier, due to its unique heterostructure, suppresses the recombination of sono-induced electrons and holes, enabling superior ROS generation. More importantly, the composite nanoparticles may effectively trigger a reoxygenation phenomenon to supply sufficient content of oxygen, favoring the ROS induction under the hypoxic condition and its extra role played for ultrasound imaging. In consequence, α-Fe2O3@Pt appears to enable effective tumor inhibition with imaging guidance, both in vitro and in vivo. This study has therefore demonstrated a highly potential platform for ultrasound-driven tumor theranostic, which may spark a series of further explorations in therapeutic systems with more rational material design.


Asunto(s)
Antineoplásicos , Nanopartículas de Magnetita , Platino (Metal) , Nanomedicina Teranóstica/métodos , Terapia por Ultrasonido/métodos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Medios de Contraste/química , Medios de Contraste/farmacocinética , Femenino , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Ratones , Ratones Endogámicos BALB C , Platino (Metal)/química , Platino (Metal)/toxicidad , Ultrasonografía
15.
Ecotoxicol Environ Saf ; 211: 111942, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476850

RESUMEN

In this work, the internalization and distribution of citric acid-coated magnetite nanoparticles (here, Fe3O4-NPs) in soybean and alfalfa tissues and their effects on plant growth were studied. Both legumes were germinated in pots containing an inert growing matrix (vermiculite) to which Hoagland solution without (control, C), with Fe3O4-NPs (50 and 100 mgironL-1, NP50 and NP100), or with the same amount of soluble iron supplied as Fe-EDTA (Fe50, Fe100) was added once before sowing. Then, plants were watered with the standard nutrient solution. The observation of superparamagnetic signals in root tissues at harvest (26 days after emergence) indicated Fe3O4-NPs uptake by both legumes. A weak superparamagnetic signal was also present in the stems and leaves of alfalfa plants. These findings suggest that Fe3O4-NPs are readily absorbed but not translocated (soybean) or scarcely translocated (alfalfa) from the roots to the shoots. The addition of both iron sources resulted in increased root weight; however, only the addition of Fe3O4-NPs resulted in significantly higher root surface; shoot weight also increased significantly. As a general trend, chlorophyll content enhanced in plants grown in vermiculite supplemented with extra iron at pre-sowing; the greatest increase was observed with NP50. The only antioxidant enzyme significantly affected by our treatments was catalase, whose activity increased in the roots and shoots of both species exposed to Fe3O4-NPs. However, no symptoms of oxidative stress, such as increased lipid peroxidation or reactive oxygen species accumulation, were evidenced in any of these legumes. Besides, no evidence of cell membrane damage or cell death was found. Our results suggest that citric acid-coated Fe3O4-NPs are not toxic to soybean and alfalfa; instead, they behave as plant growth stimulators.


Asunto(s)
Ácido Cítrico/química , Glycine max/crecimiento & desarrollo , Nanopartículas de Magnetita/química , Medicago sativa/crecimiento & desarrollo , Clorofila/metabolismo , Ácido Cítrico/metabolismo , Germinación , Hierro/metabolismo , Nanopartículas de Magnetita/toxicidad , Medicago sativa/metabolismo , Nanopartículas/metabolismo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Glycine max/metabolismo
16.
Reprod Domest Anim ; 56(2): 263-269, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32813917

RESUMEN

Pre-conceptual sex selection is still a highly debatable process whereby X and Y chromosome bearing spermatozoa are isolated before oocyte fertilization. Recently, magnetic nanoparticles (MNP) have been used to determine X and Y chromosomes bearing spermatozoa as a result of searching for a cheap, highly efficient method using non-toxic materials. This study aimed to recover the sperm bearing X chromosomes in ram with different concentrations of MNP and then evaluate the success of this method using polymerase chain reaction (PCR). Ram sperms were divided into four groups, treated with 0 (control), 50, 100 and 200 µg/ml MNP, respectively. MNP was used to restore sperm cells bearing X chromosomes. Upon recovery, the PCR was performed to identify the X and Y sperms, Methyl ThiazoleTetrazolium (MTT), to assess MNP toxicity and sperm viability and acridine orange (AO) to evaluate sperm DNA integrity. The results of PCR revealed that the treatment of spermatozoa- bearing X chromosomes with 50 µg/ml MNP had the highest effects on the recovery of X sperm rather than the other concentrations of MNP. However, the concentrations of MNP did not have any toxic effects on spermatozoa, sperm viability and, DNA integrity, but the high concentration of MNP (200 µg/ml) significantly reduced DNA integrity. According to MTT and AO results, the concentrations of MNP used in this study had no toxic effects on spermatozoa and did not reduce the sperm viability and DNA integrity, except that 200 µg/ml MNP significantly reduced DNA integrity.


Asunto(s)
Nanopartículas de Magnetita/química , Preselección del Sexo/veterinaria , Espermatozoides , Cromosoma X , Animales , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Masculino , Preselección del Sexo/métodos , Ovinos , Motilidad Espermática/efectos de los fármacos
17.
Mikrochim Acta ; 188(6): 220, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34076759

RESUMEN

Efficient capture and release of circulating tumor cells play an important role in cancer diagnosis, but the limited affinity of monovalent adhesion molecules in existing capture technologies leads to low capture efficiency, and the captured cells are difficult to be separated. Inspired by the phenomenon that the long tentacles of jellyfish contain multiple adhesion domains and can effectively capture moving food, we have constructed a biomimetic recognition strategy to capture and release tumor cells. In details, gold-coated magnetic nanomaterials (Au@Fe3O4 NPs) were first prepared and characterized by scanning electron microscopy, UV-vis absorption spectra, and Zeta potential. Then, the DNA primers modified on Au@Fe3O4 nanoparticles can be extended to form many radialized DNA products by rolling circle amplification. These long DNA products resemble jellyfish tentacles and contain multivalent aptamers that can be extended into three dimensions to increase the accessibility of target cells, resulting in efficient, simple, rapid, and specific cells capture. The capture efficiencies are no less than 92% in PBS buffer and 77% in blood. Subsequently, DNase I was selected to degrade biomimetic tentacles to release the captured tumor cells with high viability. This release strategy can not only improve cell viability, but also reduce a tedious release process and unnecessary costs. We believe that the proposed method can be expanded for the capture and release of various tumor cells and will inspire the development of circulating tumor cells analysis. A biomimetic recognition strategy for capture and release of circulating tumor cells has been developed. This method modified specific P1 DNA primers on Au@Fe3O4 NPs to form many radialized DNA products by rolling circle amplification. These products can efficiently capture CTCs since it contains multiple aptamers with a multivalent binding capacity. This make it a promising tool to capture and release of other tumor cells, and will inspire the development of CTC analysis.


Asunto(s)
Biomimética/métodos , Células Neoplásicas Circulantes/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Supervivencia Celular/efectos de los fármacos , Óxido Ferrosoférrico/química , Oro/química , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Técnicas de Amplificación de Ácido Nucleico
18.
J Sci Food Agric ; 101(13): 5550-5562, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33709391

RESUMEN

BACKGROUND: One of the major abiotic stressors that have a serious effect on plant growth and productivity worldwide is the salinity of soil or irrigation water. The effect of foliar application of magnetite nanoparticles (size = 22.05 nm) at different concentrations (0, 0.25, 0.5, and 1.0 ppm) was investigated to improve salinity tolerance in two wheat cultivars, namely, Misr1 (Tolerant) and Gimmeza11 (Sensitive). Moreover, toxicological investigations of magnetite oxide nanoparticle in Wistar albino rats were estimated. RESULTS: The magnetite nanoparticles positively affected growth, chlorophyll, and enzymatic antioxidants such as superoxide dismutase (SOD), stimulating reduced glutathione and improving the aggregation of several polypeptide chains that may be linked to the tolerance of saline stress. In contrast, magnetite nanoparticles reduced malondialdehyde (MDA). Inverse sequence-tagged repeat (ISTR) assay of DNA molecular marker showed the change in band numbers with the highest polymorphic bands with 90% polymorphism at primer F3, B5 and 20 positive bands in Gimmeza11 with 0.5 ppm magnetite nanoparticles. In the median lethal dose (LD50 ) study, no rats died after the oral administration of magnetite nanoparticle at different doses. Therefore, the iron oxide nanoparticle was nontoxic when administered orally by gavage. CONCLUSION: Magnetite nanoparticles partially helped to alleviate the effects of salt stress by activating growth, chlorophyll content, SOD, glutathione, and soluble proteins in two wheat cultivars (Misr1 and Gimmeza11) and decreasing MDA content. © 2021 Society of Chemical Industry.


Asunto(s)
Compuestos Férricos/farmacología , Nanopartículas de Magnetita/análisis , Estrés Oxidativo/efectos de los fármacos , Cloruro de Sodio/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo , Animales , Clorofila/metabolismo , Compuestos Férricos/análisis , Glutatión/metabolismo , Nanopartículas de Magnetita/toxicidad , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Estrés Salino/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Triticum/crecimiento & desarrollo
19.
Nat Methods ; 14(2): 160-166, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941784

RESUMEN

The precise manipulation of microcirculation in mice can facilitate mechanistic studies of brain injury and repair after ischemia, but this manipulation remains a technical challenge, particularly in conscious mice. We developed a technology that uses micromagnets to induce aggregation of magnetic nanoparticles to reversibly occlude blood flow in microvessels. This allowed induction of ischemia in a specific cortical region of conscious mice of any postnatal age, including perinatal and neonatal stages, with precise spatiotemporal control but without surgical intervention of the skull or artery. When combined with longitudinal live-imaging approaches, this technology facilitated the discovery of a feature of the ischemic cascade: selective loss of smooth muscle cells in juveniles but not adults shortly after onset of ischemia and during blood reperfusion.


Asunto(s)
Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/fisiopatología , Nanopartículas de Magnetita/efectos adversos , Animales , Isquemia Encefálica/tratamiento farmacológico , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcirculación/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/fisiopatología
20.
Cancer Invest ; 38(1): 61-84, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791151

RESUMEN

Cancer treatment by magnetic hyperthermia offers numerous advantages, but for practical applications many variables still need to be adjusted before developing a controlled and reproducible cancer treatment that is bio-compatible (non-damaging) to healthy cells. In this work, Fe3O4 and CoFe2O4 were synthesized and systematically studied for the development of efficient therapeutic agents for applications in hyperthermia. The biocompatibility of the materials was further evaluated using HepG2 cells as biological model. Colorimetric and microscopic techniques were used to evaluate the interaction of magnetic nano-materials (MNMs) and HepG2 cells. Finally, the behavior of MNMs was evaluated under the influence of an alternating magnetic field (AMF), observing a more efficient temperature increment for CoFe2O4, a desirable behavior for biomedical applications since lower doses and shorter expositions to alternating magnetic field might be required.


Asunto(s)
Hipertermia Inducida/métodos , Nanopartículas de Magnetita/administración & dosificación , Nanomedicina/métodos , Neoplasias/terapia , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Cobalto/administración & dosificación , Cobalto/química , Cobalto/toxicidad , Colorimetría , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Óxido Ferrosoférrico/administración & dosificación , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/toxicidad , Células Hep G2 , Humanos , Hipertermia Inducida/efectos adversos , Hígado/efectos de la radiación , Magnetoterapia/efectos adversos , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Masculino , Ensayo de Materiales/métodos , Ratas , Factores de Tiempo , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA