Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 139, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296476

RESUMEN

BACKGROUND: Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequate first-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies. Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in a rodent model of acute autoimmune neuropathies, experimental autoimmune neuritis. METHODS: Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At the beginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observed until day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelination of the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysed for reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons with monastrol in different concentrations and performed a neurite outgrowth assay. RESULTS: Treatment with monastrol enhanced functional and histological recovery in experimental autoimmune neuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values. Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dose-dependent accelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action. CONCLUSION: Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmune neuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest to improve the outcome of autoimmune neuropathy patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuritis Autoinmune Experimental , Ratas , Animales , Humanos , Neuritis Autoinmune Experimental/tratamiento farmacológico , Neuritis Autoinmune Experimental/patología , Cinesinas/uso terapéutico , Ratas Endogámicas Lew , Células Madre Pluripotentes Inducidas/patología
2.
J Neuroinflammation ; 20(1): 122, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217991

RESUMEN

BACKGROUND: Autoimmune neuropathies are common peripheral nervous system (PNS) disorders. Environmental influences and dietary components are known to affect the course of autoimmune diseases. Intestinal microorganisms can be dynamically regulated through diet, and this study combines intestinal microorganisms with diseases to open up new therapeutic ideas. METHODS: In Lewis rats, a model of EAN was established with P0 peptide, Lactobacillus were used as treatment, serum T-cell ratio, inflammatory factors, sciatic neuropathological changes, and pathological inflammatory effects on intestinal mucosa were detected, and fecal metabolomics and 16 s microbiome analysis were performed to further explore the mechanism. RESULTS: In the EAN rat model, Lactobacillus paracasei L9 (LP) could dynamically regulate the CD4+/CD8+T balance in serum, reduce serum IL-1, IL-6 and TNF-α expression levels, improve sciatic nerve demyelination and inflammatory infiltration, and reduce nervous system score. In the rat model of EAN, intestinal mucosa was damaged. Occludin and ZO-1 were downregulated. IL-1, TNF-α and Reg3γ were upregulated. LP gavage induced intestinal mucosa recovery; occludin and ZO-1 upregulation; IL-1, TNF-α and Reg3γ downregulation. Finally, metabolomics and 16 s microbiome analysis were performed, and differential metabolites were enriched with an important metabolic pathway, arginine and proline metabolism. CONCLUSION: LP improved EAN in rats by influencing intestinal community and the lysine and proline metabolism.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Neuritis Autoinmune Experimental , Ratas , Animales , Neuritis Autoinmune Experimental/patología , Factor de Necrosis Tumoral alfa/metabolismo , Ocludina/metabolismo , Ratas Endogámicas Lew , Nervio Ciático/patología , Progresión de la Enfermedad , Interleucina-1/metabolismo , Prolina/metabolismo , Prolina/farmacología , Prolina/uso terapéutico
3.
Zhonghua Yi Xue Za Zhi ; 103(17): 1334-1339, 2023 May 09.
Artículo en Zh | MEDLINE | ID: mdl-37150684

RESUMEN

Objective: To investigate the expression of glycolytic genes in immune cells and the changes of related immune cells in experimental autoimmune neuritis (EAN), and deepen the understanding of pathogenesis of EAN. Methods: Twenty-four male C57BL/6 mice (6-8 weeks old, 18-20 g) were divided into four groups according to the random number table method: control group (P0180-199 was replaced by PBS during modeling and mice were sacrificed on the 16th day), EAN mice were sacrificed on the 8th day after the end of modeling (EAN 8 d), EAN mice were sacrificed on the 16th day after the end of modeling (EAN 16 d), and EAN mice received drug intervention and were sacrificed on the 16th day after the end of modeling (2-DG was intraperitoneally injected since the day of the first immunization, 550 mg/kg; EAN 16 d+2-DG), with 6 rats in each group. The clinical symptoms and clinical scores were observed and recorded daily. At the end of the experiment, the mice were sacrificed under chloral hydrate anesthesia, and the serum, spleen, sciatic nerve and other tissues of each group were collected. The degree of inflammatory cell infiltration and demyelination of sciatic nerve were observed by hematoxylin and eosin (HE) staining and luxol fast blue (LFB) staining. Flow cytometry was used to detect the proportion of M1 macrophages, Th17 cells and Tregs cells. The mRNA expression levels of glycolysis-related genes (mTORC1, HIF1α, GLUT1 and LDHA) were detected by RT-PCR. Western blotting was used to detect the level of pan-lysine lactate in macrophages and sciatic nerve tissue. Results: The expression of glycolysis-related genes (mTORC1, HIF1α, GLUT1 and LDHA) in spleen M1 macrophages and sciatic nerve was significantly up-regulated in EAN 16 d group, compared with control, EAN 8 d and EAN 16 d+2-DG groups (all P<0.05). The relative pan-lysine lactate (pankla) expression level of spleen M1 macrophages (1.25±0.02) and sciatic nerve tissue (1.23±0.26) significantly increased in EAN 16 d group, compared with control, EAN 8 d and EAN 16 d+2-DG groups (M1 macrophages: 0.12±0.10, 1.07±0.12 and 0.42±0.07; sciatic nerve: 0.10±0.12, 0.87±0.20 and 0.36±0.05) (all P<0.05). The expression of glycolytic genes in splenic CD4+T cells showed an increasing trend, but there were no statistically significant differences among the groups, and the expression of glycolytic genes did not decrease significantly after 2-DG treatment (all P>0.05). The proportion of spleen M1 macrophages in the control group, EAN 8 d group, EAN 16 d group and EAN 16 d+2-DG group was 4.28±0.13, 7.54±0.25, 13.16±0.33 and 4.13±0.38 respectively, which was significantly higher in the EAN 16 d group (all P<0.05). The proportion of spleen Th17 cells in the four groups was 3.78±0.03, 8.24±0.55, 12.30±1.34 and 4.83±0.01, respectively, which was significantly higher in the EAN 16 d group (all P<0.05). The proportion of spleen Tregs cells in the four groups was 10.01±1.05, 7.54±0.70, 3.82±0.47 and 8.22±1.21, respectively, which was significantly lower in the EAN 16 d group (all P<0.05). Conclusions: The expression of glycolytic genes in splenic macrophages significantly increases during EAN, but not in CD4+T cells. The proportion of M1 macrophages and Th17 cells in spleen gradually increases, while the proportion of Tregs cells gradually decreases.


Asunto(s)
Neuritis Autoinmune Experimental , Ratas , Ratones , Masculino , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Neuritis Autoinmune Experimental/tratamiento farmacológico , Neuritis Autoinmune Experimental/patología , Lisina/metabolismo , Lisina/uso terapéutico , Ratones Endogámicos C57BL , Nervio Ciático/metabolismo , Nervio Ciático/patología , Glucólisis
4.
J Immunol ; 205(8): 2026-2038, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938729

RESUMEN

It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Tejido Nervioso , Neuritis Autoinmune Experimental , Páncreas , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Tejido Nervioso/inmunología , Tejido Nervioso/patología , Neuritis Autoinmune Experimental/genética , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Páncreas/inmunología , Páncreas/patología
5.
Int J Neurosci ; 130(11): 1109-1117, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32009498

RESUMEN

Background: Guillain-Barré syndrome (GBS), an autoimmune disease and an acute inflammation disorder, is currently the most frequent cause of acute flaccid paralysis worldwide. EAN, an animal model of GBS, is a CD4+ T cell-mediated autoimmune disease of the PNS. Wnt/ß-catenin signals are critically important to several fundamental aspects of peripheral nerve development and play a crucial role in Schwann cell proliferation. Here, we investigate the role of Wnt/ß-catenin signalling cascades in EAN rats.Methods: 28 male Lewis rats weighing 170 ± 10 g were randomly divided into control group (n = 7) and EAN groups (Early group; Peak group and Recovery group. n = 7 per group). EAN rats were immunized with P257-81 peptide; weighed daily, and the neurologic signs of EAN were evaluated every day. The sciatic nerve was taken on the days 10, 17, and 30 p.i. for H&E staining, transmission electron microscopy and immunohistochemical staining; blood samples were collected weekly from caudal vein to detect IFN-γ, IL-4, TGF-ß1; and the sciatic nerve was taken to examinate the dynamics expression of Wnt/ß-catenin pathway molecules.Results: In our study, we chose tail-root injection to better model GBS. Moreover, we observed that IFN-γ levels paralleled clinical EAN, and the levels of TGF-ß1 and IL-4 gradually increased and peaked in the recovery phase. In addition, we have shown that canonical Wnt signalling is upregulated and reached a peak in the late recovery phase.Conclusion: Our findings suggest that Wnt/ß-catenin signalling is associated with the promotion of remyelination in EAN rats.


Asunto(s)
Síndrome de Guillain-Barré , Interferón gamma/sangre , Interleucina-4/sangre , Neuritis Autoinmune Experimental , Remielinización , Nervio Ciático , Factor de Crecimiento Transformador beta1/sangre , Vía de Señalización Wnt , Animales , Síndrome de Guillain-Barré/inmunología , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patología , Masculino , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/metabolismo , Neuritis Autoinmune Experimental/patología , Ratas , Ratas Endogámicas Lew , Remielinización/fisiología , Nervio Ciático/inmunología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Regulación hacia Arriba , Vía de Señalización Wnt/fisiología
6.
J Neuroinflammation ; 16(1): 54, 2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30825874

RESUMEN

BACKGROUND: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune-mediated inflammatory disease of the peripheral nervous system characterized by a response directed against certain myelin proteins and for which therapies are limited. Previous studies have suggested a beneficial role of FTY720, a sphingosine 1-phosphate (S1P) receptor agonist, known to deplete lymphocytes from the peripheral blood by sequestering them into lymph nodes, in the treatment of experimental autoimmune neuritis (EAN). Therefore, we investigated whether FTY720 is also beneficial in chronic experimental autoimmune neuritis (c-EAN), a recently developed rat model mimicking human CIDP. METHODS: c-EAN was induced in Lewis rats by immunization with S-palm P0(180-199) peptide. Rats were treated with FTY720 (1 mg/kg) or vehicle intraperitoneally once daily from the onset of clinical signs for 18 days; clinical signs were assessed daily until 60 days post-immunization (dpi). Electrophysiological and histological features were examined at different time points. We also evaluated the serum levels of different pro- and anti-inflammatory cytokines by ELISA or flow cytometry at 18, 40, and 60 dpi. RESULTS: Our data demonstrate that FTY720 decreased the severity and abolished the chronicity of the disease in c-EAN rats. Therapeutic FTY720 treatment reversed electrophysiological and histological anomalies, suggesting that myelinated fibers were subsequently preserved, it inhibited macrophage and IL-17+ cell infiltration in PNS, and it significantly reduced circulating pro-inflammatory cytokines. CONCLUSIONS: FTY720 treatment has beneficial effects on c-EAN, a new animal model mimicking human CIDP. We have shown that FTY720 is an effective immunomodulatory agent, improving the disease course of c-EAN, preserving the myelinated fibers, attenuating the axonal degeneration, and decreasing the number of infiltrated inflammatory cells in peripheral nerves. These data confirm the interest of testing FTY720 or molecules targeting S1P in human peripheral neuropathies.


Asunto(s)
Clorhidrato de Fingolimod/farmacología , Inmunosupresores/farmacología , Neuritis Autoinmune Experimental/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Animales , Masculino , Neuritas/efectos de los fármacos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Ratas , Ratas Endogámicas Lew , Receptores de Lisoesfingolípidos/agonistas , Índice de Severidad de la Enfermedad
7.
J Neuroinflammation ; 16(1): 58, 2019 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-30851725

RESUMEN

BACKGROUND: Corticosteroids dominate in the treatment of chronic autoimmune neuropathies although long-term use is characterized by devastating side effects. METHODS: We introduce the intrathecal application of the synthetic steroid triamcinolone (TRIAM) as a novel therapeutic option in experimental autoimmune neuritis in Lewis rats RESULTS: After immunization with neuritogenic P2 peptide, we show a dose-dependent therapeutic effect of one intrathecal injection of 0.3 or 0.6 mg/kg TRIAM on clinical and electrophysiological parameters of neuritis with a lower degree of inflammatory infiltrates (T cells and macrophages) and demyelination in the sciatic nerve. In vitro studies in Schwann cell cultures showed an increased expression of IL-1 receptor antagonist and reduced expression of Toll-like receptor 4 after incubation with TRIAM as well as a protective effect of TRIAM against oxidative stress after H2O2 exposure. CONCLUSION: Intrathecal TRIAM application could be a novel immunomodulatory and potentially neuroprotective option for autoimmune neuropathies with a direct effect on Schwann cells.


Asunto(s)
Antiinflamatorios/administración & dosificación , Neuritis Autoinmune Experimental/tratamiento farmacológico , Neuritis Autoinmune Experimental/patología , Estrés Oxidativo/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Triamcinolona Acetonida/administración & dosificación , Animales , Antígenos CD/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Espinales/métodos , Ganglios Linfáticos/citología , Masculino , Conducción Nerviosa/efectos de los fármacos , Neuritis Autoinmune Experimental/inducido químicamente , Ratas , Ratas Endogámicas Lew , Factores de Transcripción SOXE/metabolismo , Antígenos Thy-1/metabolismo
8.
Clin Exp Immunol ; 198(2): 184-197, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344254

RESUMEN

Guillain-Barré syndrome (GBS) is characterized by acute immune-mediated peripheral neuropathy, which may result in rapidly progressive paralysis and fatal respiratory failure. As the underlying pathological mechanisms of GBS are unclear, we surveyed the transcriptome of rats with experimental autoimmune neuritis (EAN), a model of GBS. Briefly, sciatic nerves on both sides were collected from 8-10-week-old Lewis rats during early (10 days post-induction), peak (19 days) and late neuritis (30 days). Total RNA was sequenced to identify differentially expressed genes. Compared to control rats without induced neuritis, 33 genes were differentially expressed in the early phase (14 up-regulated and 19 down-regulated), with an adjusted P-value < 0·05 and |log2 fold-change| >1, as were 137 genes in the peak phase (126 up-regulated and 11 down-regulated) and 60 genes in the late phase (58 up-regulated and two down-regulated). Eleven of these genes were common to all stages, suggesting their crucial roles throughout the disease course. Analysis of protein-protein interactions revealed Fos, Ccl2, Itgax and C3 as node genes at different stages. Functional analysis of differentially expressed genes identified biological processes and pathways that are activated as neuritis progresses. This is the first genomewide gene expression study of peripheral nerves in experimental autoimmune neuritis model. Dynamic gene expression and significantly altered biological functions were detected in different phases of the disease, increasing our understanding of the molecular mechanisms underlying EAN and highlighting potential targets for its diagnosis and treatment.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Neuritis Autoinmune Experimental , Nervio Ciático/inmunología , Análisis de Secuencia de ARN , Transcriptoma/inmunología , Animales , Femenino , Neuritis Autoinmune Experimental/genética , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Ratas , Nervio Ciático/patología
9.
Toxicol Pathol ; 47(4): 542-552, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30987532

RESUMEN

Experimental autoimmune neuritis (EAN) is an animal model for Guillain-Barré syndrome (GBS), which results in neurological symptoms and histopathological changes in peripheral nerves. In this model, the correlation between the progression of the disease and the histopathological changes is not clear. To further examine histopathological changes in peripheral nerves in EAN rats, sciatic nerves were sampled at onset (day 10), peak (day 16), and recovery (days 22 and 25) of neurological symptoms in P2(57-81)-peptide-administered rats. Axon and myelin degeneration was observed by light microscopy at onset, degeneration became severe at peak, and persisted at recovery. Densities of myelinated nerve fibers and myelin areas decreased from day 10 to a minimum on day 22. Slight axon and myelin degeneration, such as accumulation of vesicles in axons and focal myelin splitting and folding, was observed by transmission electron microscopy at onset; severe degeneration, such as axonal loss, myelin ovoid, and demyelination, increased at peak; and regenerative changes, such as remyelination and enlargement of Schwann cell cytoplasm, occurred at recovery. These results suggest that EAN rats have histopathological similarities to some types of GBS patients and that EAN rats are a useful model to understand the pathogenesis of GBS.


Asunto(s)
Axones/ultraestructura , Síndrome de Guillain-Barré/patología , Vaina de Mielina/ultraestructura , Neuritis Autoinmune Experimental/patología , Nervio Ciático/patología , Animales , Síndrome de Guillain-Barré/inmunología , Masculino , Microscopía Electrónica de Transmisión , Proteína P2 de Mielina/inmunología , Fibras Nerviosas Mielínicas/ultraestructura , Neuritis Autoinmune Experimental/inmunología , Fragmentos de Péptidos/inmunología , Ratas Endogámicas Lew
10.
Neuroimage ; 175: 327-339, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29627590

RESUMEN

BACKGROUND: Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS: 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS: In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION: OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.


Asunto(s)
Imagen de Difusión Tensora/métodos , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Gliosis/patología , Neuritis Autoinmune Experimental/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Vías Visuales/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Imagen Multimodal , Neuritis Autoinmune Experimental/patología , Nervio Óptico/patología , Vías Visuales/patología
11.
Cell Physiol Biochem ; 47(1): 390-402, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29772575

RESUMEN

BACKGROUND/AIMS: This study aimed to explore whether the adoptive transfusion of autologous CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) has a therapeutic effect on Experimental autoimmune neuritis (EAN) model rats, and it provides new experimental and theoretical bases for the immunotherapy of Guillain-Barre syndrome (GBS). METHODS: CD4+CD25+ Tregs were sorted from the spleens of rats using immunomagnetic bead separation techniques combined with flow cytometry. Their in vitro inhibitory function was determined using a lymphocyte proliferation inhibition test, and their purity was confirmed by flow cytometry. Cells were stimulated using CD3/CD28 monoclonal antibodies and were cultured in culture medium containing interleukin 2 (IL-2), transforming growth factor-ß (TGF-ß) and rapamycin. After 15 days of amplification, CD4+CD25+ Tregs were collected and transfused into EAN model rats. Changes in the pathology and electron microscopical morphology of rat sciatic nerves in the normal group, untreated group, low-dose group (2 × 107) and high-dose group (4 × 107) were observed, and the expression of CD4+CD25+FOXP3 in peripheral blood in the four groups of rats was detected by flow cytometry. RESULTS: Compared with rats in the untreated group, rats in the treatment groups had significantly reduced infiltration of inflammatory cells in the sciatic nerve, as well as myelin and axonal damage. Additionally, the CD4+CD25+ Tregs levels in peripheral blood were significantly higher than those in the untreated group (P< 0. 05). Moreover, the therapeutic effect became more significant with an increase in the dose of adoptive transfusion. CONCLUSION: Adoptive transfusion of CD4+CD25+ Tregs into EAN model rats has significant therapeutic effects.


Asunto(s)
Traslado Adoptivo , Antígenos CD4/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Neuritis Autoinmune Experimental/terapia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Traslado Adoptivo/métodos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Ratas , Ratas Endogámicas Lew
12.
J Neuroinflammation ; 15(1): 61, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29486771

RESUMEN

BACKGROUND: Small-diameter, myelinated axons are selectively susceptible to dysfunction in several inflammatory PNS and CNS diseases, resulting in pain and degeneration, but the mechanism is not known. METHODS: We used in vivo confocal microscopy to compare the effects of inflammation in experimental autoimmune neuritis (EAN), a model of Guillain-Barré syndrome (GBS), on mitochondrial function and transport in large- and small-diameter axons. We have compared mitochondrial function and transport in vivo in (i) healthy axons, (ii) axons affected by experimental autoimmune neuritis, and (iii) axons in which mitochondria were focally damaged by laser induced photo-toxicity. RESULTS: Mitochondria affected by inflammation or laser damage became depolarized, fragmented, and immobile. Importantly, the loss of functional mitochondria was accompanied by an increase in the number of mitochondria transported towards, and into, the damaged area, perhaps compensating for loss of ATP and allowing buffering of the likely excessive Ca2+ concentration. In large-diameter axons, healthy mitochondria were found to move into the damaged area bypassing the dysfunctional mitochondria, re-populating the damaged segment of the axon. However, in small-diameter axons, the depolarized mitochondria appeared to "plug" the axon, obstructing, sometimes completely, the incoming (mainly anterograde) transport of mitochondria. Over time (~ 2 h), the transported, functional mitochondria accumulated at the obstruction, and the distal part of the small-diameter axons became depleted of functional mitochondria. CONCLUSIONS: The data show that neuroinflammation, in common with photo-toxic damage, induces depolarization and fragmentation of axonal mitochondria, which remain immobile at the site of damage. The damaged, immobile mitochondria can "plug" myelinated, small-diameter axons so that successful mitochondrial transport is prevented, depleting the distal axon of functioning mitochondria. Our observations may explain the selective vulnerability of small-diameter axons to dysfunction and degeneration in a number of neurodegenerative and neuroinflammatory disorders.


Asunto(s)
Axones/metabolismo , Mitocondrias/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuritis Autoinmune Experimental/metabolismo , Nervios Periféricos/metabolismo , Animales , Axones/patología , Transporte Biológico/fisiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Fibras Nerviosas Mielínicas/patología , Neuritis Autoinmune Experimental/patología , Nervios Periféricos/patología
13.
J Neuroinflammation ; 15(1): 217, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068351

RESUMEN

BACKGROUND: Autoimmune polyneuropathies are acquired inflammatory disorders of the peripheral nervous system (PNS) characterized by inflammation, demyelination, and axonal degeneration. Although the pathogenesis has not been fully elucidated, T cells recognizing self-antigens are believed to initiate inflammation in a subgroup of patients. However, the route and time of T cell entry into the PNS have not yet been described in detail. In this study, we analyzed both kinetics as well as localization of retrovirally transfected green fluorescent protein (GFP)-expressing neuritogenic T lymphocytes in experimental autoimmune neuritis (EAN). METHODS: T lymphocytes obtained from rats following EAN induction by immunization with peripheral nerve protein peptide P255-78 were retrovirally engineered to express GFP. Non-specific T cells were negatively selected by in vitro restimulation, whereas GFP-expressing neuritogenic T cells (reactive to P255-78) were adoptively transferred into healthy rats (AT-EAN). Antigen-specific T cell tracking and localization was performed by flow cytometry and immunohistochemistry during the course of disease. RESULTS: After induction of autoimmune neuritis, P2-reactive T cells were detectable in the liver, spleen, lymph nodes, lung, peripheral blood, and the sciatic nerves with distinct kinetics. A significant number of GFP+ T cells appeared early in the lung with a peak at day four. In the peripheral nerves within the first days, GFP-negative T cells rapidly accumulated and exceeded the number of GFP-expressing cells, but did not enter the endoneurium. Very early after adoptive transfer, T cells are found in proximity to peripheral nerves and in the epineurium. However, only GFP-expressing neuritogenic T cells are able to enter the endoneurium from day five after transfer. CONCLUSIONS: Our findings suggest that neuritogenic T cells invade the PNS early in the course of disease. However, neuritogenic T cells cross the blood-nerve barrier with a certain delay without preference to dorsal roots. Further understanding of the pathophysiological role of autoagressive T cells may help to improve therapeutic strategies in immune-mediated neuropathies.


Asunto(s)
Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Nervios Periféricos/patología , Linfocitos T/fisiología , Traslado Adoptivo , Animales , Antígenos CD4/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/inmunología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína P2 de Mielina/metabolismo , Neuritis Autoinmune Experimental/inducido químicamente , Neuritis Autoinmune Experimental/cirugía , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Endogámicas Lew , Linfocitos T/metabolismo , Factores de Tiempo , Transducción Genética
14.
J Neuroinflammation ; 15(1): 122, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29690884

RESUMEN

BACKGROUND: Autoimmune neuropathies are common PNS disorders and effective treatment is challenging. Environmental influence and dietary components are known to affect the course of autoimmune diseases. Capsaicin as pungent component of chili-peppers is common in human nutrition. An influence of capsaicin on autoimmune diseases has been postulated. METHODS: We tested capsaicin in the animal model of experimental autoimmune neuritis (EAN) in Lewis rat. Rats were immunized with P2-peptide and were treated with capsaicin in different preventive settings. Electrophysiological, histological, and molecular biological analyses of the sciatic nerve were performed to analyze T-cell and macrophage cell count, TRPV1, and cytokine expression. Moreover, FACS analyses including the intestinal immune system were executed. RESULTS: We observed an immunomodulatory effect of an early preventive diet-concept, where a physiological dosage of oral capsaicin was given 10 days before immunization in EAN. A reduced inflammation of the sciatic nerve was significant detectable clinically, electrophysiologically (CMAPs reduced in control group p < 0.01; increase of nerve conduction blocks in control group p < 0.05), histologically (significant reduction of T-cells, macrophages and demyelination), and at cytokine level. In contrast, this therapeutic effect was missing with capsaicin given from the day of immunization onwards. As possible underlying mechanism, we were able to show changes in the expression of the capsaicin receptor in the sciatic nerve and the small intestine, as well as altered immune cell populations in the small intestine. CONCLUSION: This is the first report about the immunomodulatory effect of the common nutrient, capsaicin, in an experimental model for autoimmune neuropathies.


Asunto(s)
Capsaicina/uso terapéutico , Dieta/métodos , Neuritis Autoinmune Experimental/dietoterapia , Animales , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Motores/efectos de los fármacos , Femenino , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Conducción Nerviosa/efectos de los fármacos , Neuritis Autoinmune Experimental/patología , Neuritis Autoinmune Experimental/fisiopatología , Ratas , Ratas Endogámicas Lew , Proteínas S100/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Nervio Ciático/patología , Linfocitos T/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
15.
Am J Pathol ; 187(1): 42-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842213

RESUMEN

The functional relevance of the innate immune system has not yet been dissected in P0106-125-induced murine experimental autoimmune neuritis. Therefore, the role of Toll-like receptor (TLR) 2, TLR4, myeloid differentiation response gene 88, and Toll-IL-1 receptor domain-containing adaptor-inducing interferon-γ (TRIF), factors critically involved in the TLR signaling pathway, was studied in experimental autoimmune neuritis. In the absence of TLR2, TLR4, myeloid differentiation response gene 88, or TRIF, the clinical course was significantly attenuated compared to wild-type mice. This could be attributed to impaired NF-κB activation, as shown by the absence of nuclear translocation of RelA with a decreased expression of IL-6, IL-12p40, and IL-17A. Remarkably, P0106-125-immunized TLR20/0 mice exhibited a delayed recovery as compared to TLR40/0 mice, which was because of an impaired T helper cell 2 polarization. Immunized TLR20/0 mice were unable to induce OX40 and OX40L by matrix metalloproteinase-2 on splenic dendritic cells. Subsequently, M2 polarization was impaired and macrophages were unable to sufficiently induce T regulatory cells (Tregs). Thus, in the recovery phase, Tregs were significantly increased in TLR40/0 mice as compared to wild-type mice, whereas Tregs in immunized TLR20/0 mice were only slightly increased. Our data highlight the relevance of innate immunity and, especially, the tight interaction between the innate and the adaptive immune system, which should be considered for therapeutic approaches of autoimmune diseases.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Neuritis Autoinmune Experimental/metabolismo , Neuritis Autoinmune Experimental/patología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Axones/patología , Linfocitos T CD4-Positivos/inmunología , Complemento C1q/inmunología , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Interferón gamma/genética , Interferón gamma/metabolismo , Recuento de Linfocitos , Activación de Macrófagos , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/inervación , Músculo Esquelético/patología , Proteína P0 de la Mielina , FN-kappa B/metabolismo , Neuritis Autoinmune Experimental/sangre , Neuritis Autoinmune Experimental/inmunología , Ligando OX40/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores OX40/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Transducción de Señal , Bazo/metabolismo
16.
J Neurosci ; 36(37): 9590-603, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629711

RESUMEN

UNLABELLED: Experimental autoimmune neuritis (EAN) is the animal model of human acute inflammatory demyelinating polyradiculoneuropathies (AIDP), an auto-immune inflammatory demyelination disease of the peripheral nervous system (PNS) and the world's leading cause of acute autoimmune neuromuscular paralysis. EAN and AIDP are characterized by self-limitation with spontaneous recovery; however, endogenous pathways that regulate inflammation resolution in EAN and AIDP remain elusive. A pathway of endogenous mediators, especially resolvins and clearance of apoptotic cells, may be involved. Here, we determined that resolvin D1 (RvD1), its synthetic enzyme, and its receptor were greatly increased in PNS during the recovery stage of EAN. Both endogenous and exogenous RvD1 increased regulatory T (Treg) cell and anti-inflammatory macrophage counts in PNS, enhanced inflammation resolution, and promoted disease recovery in EAN rats. Moreover, RvD1 upregulated the transforming growth factor-ß (TGF-ß) level and pharmacologic inhibition of TGF-ß signaling suppressed RvD1-induced Treg cell counts, but not anti-inflammatory macrophage counts, and RvD1-improved inflammation resolution and disease recovery in EAN rats. Mechanistically, the RvD1-enhanced macrophage phagocytosis of apoptotic T cells leading to reduced apoptotic T-cell accumulation in PNS induced TGF-ß production and caused Treg cells to promote inflammation resolution and disease recovery in EAN. Therefore, these data highlight the crucial role of RvD1 as an important pro-resolving molecule in EAN and suggest its potential as a therapeutic target in human neuropathies. SIGNIFICANCE STATEMENT: Experimental autoimmune neuritis (EAN) is the animal model of human acute inflammatory demyelinating polyradiculoneuropathies, an auto-immune inflammatory demyelination disease of the peripheral nervous system (PNS) and the world's leading cause of acute autoimmune neuromuscular paralysis. Here, we demonstrated that resolvin D1 (RvD1) promoted macrophage phagocytosis of apoptotic T cells in PNS, thereby upregulating transforming growth factor-ß by macrophages, increased local Treg cell counts, and finally promoted inflammation resolution and disease recovery in EAN. These data highlight the crucial role of RvD1 as an important pro-resolving molecule in EAN and suggest that it has potential as a therapeutic target in human neuritis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Neuritis Autoinmune Experimental/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ectodisplasinas/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Factores de Transcripción Forkhead/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Neuritis Autoinmune Experimental/metabolismo , Neuritis Autoinmune Experimental/patología , Fagocitosis/efectos de los fármacos , Pteridinas/uso terapéutico , Ratas , Ratas Endogámicas Lew , Receptores de Lipoxina/antagonistas & inhibidores , Receptores de Lipoxina/metabolismo , Nervio Ciático/patología , Nervio Ciático/ultraestructura , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Linfocitos T Reguladores/ultraestructura
17.
Glia ; 65(11): 1848-1862, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28795433

RESUMEN

Schwann cells (SCs), which form the peripheral myelin sheath, have the unique ability to dedifferentiate and to destroy the myelin sheath under various demyelination conditions. During SC dedifferentiation-associated demyelination (SAD) in Wallerian degeneration (WD) after axonal injury, SCs exhibit myelin and junctional instability, down-regulation of myelin gene expression and autophagic myelin breakdown. However, in inflammatory demyelinating neuropathy (IDN), it is still unclear how SCs react and contribute to segmental demyelination before myelin scavengers, macrophages, are activated for phagocytotic myelin digestion. Here, we compared the initial SC demyelination mechanism of IDN to that of WD using microarray and histochemical analyses and found that SCs in IDN exhibited several typical characteristics of SAD, including actin-associated E-cadherin destruction, without obvious axonal degeneration. However, autophagolysosome activation in SAD did not appear to be involved in direct myelin lipid digestion by SCs but was required for the separation of SC body from destabilized myelin sheath in IDN. Thus, lysosome inhibition in SCs suppressed segmental demyelination by preventing the exocytotic myelin clearance of SCs. In addition, we found that myelin rejection, which might also require the separation of SC cytoplasm from destabilized myelin sheath, was delayed in SC-specific Atg7 knockout mice in WD, suggesting that autophagolysosome-dependent exocytotic myelin clearance by SCs in IDN and WD is a shared mechanism. Finally, autophagolysosome activation in SAD was mechanistically dissociated with the junctional destruction in both IDN and WD. Thus, our findings indicate that SAD could be a common myelin clearance mechanism of SCs in various demyelinating conditions.


Asunto(s)
Desdiferenciación Celular/fisiología , Neuritis Autoinmune Experimental/patología , Neuritis Autoinmune Experimental/fisiopatología , Células de Schwann/patología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Axotomía/efectos adversos , Cloroquina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritis Autoinmune Experimental/tratamiento farmacológico , Ratas , Ratas Endogámicas Lew , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Neuropatía Ciática/tratamiento farmacológico
18.
J Neuroinflammation ; 14(1): 92, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446186

RESUMEN

BACKGROUND: Fingolimod, a sphingosine-1-phosphate receptor modulator with well-described immunomodulatory properties involving peripheral immune cell trafficking, was the first oral agent approved for the treatment of relapsing remitting multiple sclerosis. Analogous immunomodulatory treatment options for chronic peripheral autoimmune neuropathies are lacking. METHODS: We tested fingolimod in the animal model of experimental autoimmune neuritis in Lewis rat. Six to eight-week-old female rats were immunized with P2 peptide and from this day on treated with fingolimod. Histology of the sciatic nerve was done to analyze T cell and macrophage cell count, intercellular adhesion molecule (ICAM) and amyloid precursor protein (APP) expression, as well as apoptotic Schwann cell counts. RESULTS: Preventive oral treatment with 0.1 mg/kg up to 3 mg/kg fingolimod once daily dissolved in rapeseed oil completely ameliorated clinical neuritis signs. It reduced circulating peripheral blood T cells and infiltrating T cells and macrophages in the sciatic nerve, whereas at the same time, it preserved blood-nerve barrier impermeability. Most importantly, fingolimod showed beneficial properties on the pathogenic process as indicated by fewer apoptotic Schwann cells and a lower amount of amyloid precursor protein indicative of axonal damage at the peak of disease course. CONCLUSIONS: Taken together, orally administered low-dose fingolimod showed an impressive immunomodulatory effect in the rat model of experimental autoimmune neuritis. Our current observations introduce fingolimod as an attractive treatment option for neuritis patients.


Asunto(s)
Axones/efectos de los fármacos , Clorhidrato de Fingolimod/uso terapéutico , Inmunosupresores/uso terapéutico , Neuritis Autoinmune Experimental/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Animales , Axones/inmunología , Axones/patología , Relación Dosis-Respuesta a Droga , Femenino , Inmunosupresores/farmacología , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Neuroprotección/fisiología , Ratas , Ratas Endogámicas Lew , Células de Schwann/inmunología , Células de Schwann/patología
19.
J Immunol ; 194(9): 4175-84, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825437

RESUMEN

Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout NOD mice mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy, and is mediated by myelin protein zero (P0)-reactive Th1 cells. In this study, we focused on the effect of B7-2 deletion on the function of dendritic cells (DCs) within the context of SAP. We found that development of SAP was associated with a preponderance or increase of CD11b(+) DCs in peripheral lymph nodes and sciatic nerves. B7-2 deletion led to altered immunophenotypic properties that differ between CD11b(+) DCs and CD8α(+) DCs. Both DC subsets from B7-2 knockout NOD mice exhibited impaired capacity to capture fluorophore-labeled myelin P0, but diminished Ag-presenting function was observed only in CD11b(+) DCs. Clinical assessment, electrophysiologic studies, and splenocyte proliferation studies revealed that absence of B7-2 on DCs was sufficient to cause impaired ability to induce tolerance to P0, which could be overcome by preconditioning with IL-10. Tolerance induction by Ag-pulsed wild-type NOD DCs was dependent on IL-10 and was associated with increased CD4(+) regulatory T cells, whereas tolerance induction by IL-10-conditioned B7-2-deficient DCs was associated with increased percentages of both regulatory T cells and B10 cells in the spleen. We conclude that B7-2 deletion has an impact on the distribution of DC subsets in lymphoid organs and alters the expression of costimulatory molecules, but functional consequences are not uniform across DC subsets. Defective tolerance induction in the absence of B7-2 can be restored by preconditioning of DCs with IL-10.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/patología , Neuritis Autoinmune Experimental/inmunología , Polineuropatías/inmunología , Animales , Femenino , Tolerancia Inmunológica/inmunología , Interleucina-10/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Neuritis Autoinmune Experimental/patología , Polineuropatías/patología
20.
J Neuroinflammation ; 13(1): 97, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27142843

RESUMEN

BACKGROUND: Guillain-Barré syndrome (GBS) is an acute, post-infectious, immune-mediated, demyelinating disease of peripheral nerves and nerve roots. Dimethyl fumarate (DMF), a fumaric acid ester, exhibits various biological activities, including multiple immunomodulatory and neuroprotective effects. However, the potential mechanism underlying the effect of DMF in GBS animal model experimental autoimmune neuritis (EAN) is unclear. METHODS: Using EAN, an established GBS model, we investigated the effect of DMF by assessing clinical score, histological staining and electrophysiological studies. Then, we further explored the potential mechanism by Western blot analysis, flow cytometry, fluorescence immunohistochemistry, PCR, and ELISA analysis. The Mann-Whitney U test was used to compare differences between control group and treatment groups where appropriate. RESULTS: DMF treatment reduced the neurological deficits by ameliorating inflammatory cell infiltration and demyelination of sciatic nerves. In addition, DMF treatment decreased the level of pro-inflammatory M1 macrophages while increasing the number of anti-inflammatory M2 macrophages in the spleens and sciatic nerves of EAN rats. In RAW 264.7, a shift in macrophage polarization from M1 to M2 phenotype was demonstrated to be depended on DMF application. In sciatic nerves, DMF treatment elevated the level of the antioxidant transcription factor nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and its target gene hemoxygenase-1 (HO-1) which could facilitate macrophage polarization toward M2 type. Moreover, DMF improved the inflammatory milieu in spleens of EAN rats, characterized by downregulation of messenger RNA (mRNA) of IFN-γ, TNF-α, IL-6, and IL-17 and upregulation of mRNA level of IL-4 and IL-10. CONCLUSIONS: Taken together, our data demonstrate that DMF can effectively suppress EAN, and the mechanism involves altering the balance of M1/M2 macrophages and attenuating inflammation.


Asunto(s)
Dimetilfumarato/farmacología , Macrófagos/inmunología , Neuritis Autoinmune Experimental/inmunología , Neuritis Autoinmune Experimental/patología , Fármacos Neuroprotectores/farmacología , Animales , Western Blotting , Electrofisiología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Hemo-Oxigenasa 1/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Neuritis Autoinmune Experimental/metabolismo , Reacción en Cadena de la Polimerasa , Ratas , Ratas Endogámicas Lew
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA