Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.387
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150623

RESUMEN

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Asunto(s)
Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Esfingolípidos/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Animales , Apoptosis , Línea Celular , Células HeLa , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Obesidad/fisiopatología , Esfingolípidos/fisiología , Esfingosina N-Aciltransferasa/fisiología
2.
Nat Rev Mol Cell Biol ; 20(4): 242-258, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610207

RESUMEN

Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.


Asunto(s)
Adipogénesis/fisiología , Adipocitos/metabolismo , Adipocitos/fisiología , Animales , Diferenciación Celular/fisiología , Salud , Humanos , Obesidad/metabolismo , Obesidad/fisiopatología , Transducción de Señal/fisiología
3.
Cell ; 165(4): 882-95, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133169

RESUMEN

High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Obesidad/fisiopatología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cognición , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Células Mieloides/metabolismo
4.
Cell ; 158(1): 25-40, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995976

RESUMEN

Obesity and diabetes affect more than half a billion individuals worldwide. Interestingly, the two conditions do not always coincide and the molecular determinants of "healthy" versus "unhealthy" obesity remain ill-defined. Chronic metabolic inflammation (metaflammation) is believed to be pivotal. Here, we tested a hypothesized anti-inflammatory role for heme oxygenase-1 (HO-1) in the development of metabolic disease. Surprisingly, in matched biopsies from "healthy" versus insulin-resistant obese subjects we find HO-1 to be among the strongest positive predictors of metabolic disease in humans. We find that hepatocyte and macrophage conditional HO-1 deletion in mice evokes resistance to diet-induced insulin resistance and inflammation, dramatically reducing secondary disease such as steatosis and liver toxicity. Intriguingly, cellular assays show that HO-1 defines prestimulation thresholds for inflammatory skewing and NF-κB amplification in macrophages and for insulin signaling in hepatocytes. These findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Ratones , Ratones Noqueados , Obesidad/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
5.
Cell ; 152(3): 612-9, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374353

RESUMEN

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.


Asunto(s)
Tronco Encefálico/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Presión Sanguínea , Tronco Encefálico/citología , Neuronas Colinérgicas/metabolismo , AMP Cíclico/metabolismo , Fenómenos Electrofisiológicos , Humanos , Canales KATP/metabolismo , Masculino , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Parasimpático/metabolismo , Receptor de Melanocortina Tipo 4/genética , Médula Espinal/metabolismo , Sistema Nervioso Simpático/metabolismo
6.
Nature ; 595(7866): 266-271, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163066

RESUMEN

Obesity is a worldwide epidemic that predisposes individuals to many age-associated diseases, but its exact effects on organ dysfunction are largely unknown1. Hair follicles-mini-epithelial organs that grow hair-are miniaturized by ageing to cause hair loss through the depletion of hair follicle stem cells (HFSCs)2. Here we report that obesity-induced stress, such as that induced by a high-fat diet (HFD), targets HFSCs to accelerate hair thinning. Chronological gene expression analysis revealed that HFD feeding for four consecutive days in young mice directed activated HFSCs towards epidermal keratinization by generating excess reactive oxygen species, but did not reduce the pool of HFSCs. Integrative analysis using stem cell fate tracing, epigenetics and reverse genetics showed that further feeding with an HFD subsequently induced lipid droplets and NF-κB activation within HFSCs via autocrine and/or paracrine IL-1R signalling. These integrated factors converge on the marked inhibition of Sonic hedgehog (SHH) signal transduction in HFSCs, thereby further depleting lipid-laden HFSCs through their aberrant differentiation and inducing hair follicle miniaturization and eventual hair loss. Conversely, transgenic or pharmacological activation of SHH rescued HFD-induced hair loss. These data collectively demonstrate that stem cell inflammatory signals induced by obesity robustly represses organ regeneration signals to accelerate the miniaturization of mini-organs, and suggests the importance of daily prevention of organ dysfunction.


Asunto(s)
Alopecia/patología , Alopecia/fisiopatología , Folículo Piloso/patología , Obesidad/fisiopatología , Células Madre/patología , Animales , Comunicación Autocrina , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Senescencia Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/patología , Estrés Oxidativo , Comunicación Paracrina , Receptores de Interleucina-1/metabolismo
7.
Mol Cell ; 76(3): 500-515.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31422874

RESUMEN

Diet-induced obesity can be caused by impaired thermogenesis of beige adipocytes, the brown-like adipocytes in white adipose tissue (WAT). Promoting brown-like features in WAT has been an attractive therapeutic approach for obesity. However, the mechanism underlying beige adipocyte formation is largely unknown. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and overexpression of human Naa10p is linked to cancer development. Here, we report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, and beige adipocyte differentiation. Mechanistically, Naa10p acetylates the N terminus of Pgc1α, which prevents Pgc1α from interacting with Pparγ to activate key genes, such as Ucp1, involved in beige adipocyte function. Consistently, fat tissues of obese human individuals show higher NAA10 expression. Thus, Naa10p-mediated N-terminal acetylation of Pgc1α downregulates thermogenic gene expression, making inhibition of Naa10p enzymatic activity a potential strategy for treating obesity.


Asunto(s)
Adipocitos Beige/enzimología , Tejido Adiposo Beige/enzimología , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Obesidad/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Procesamiento Proteico-Postraduccional , Termogénesis , Acetilación , Tejido Adiposo Beige/fisiopatología , Adiposidad , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Acetiltransferasa A N-Terminal/deficiencia , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/deficiencia , Acetiltransferasa E N-Terminal/genética , Células 3T3 NIH , Obesidad/genética , Obesidad/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenotipo , Transducción de Señal , Adulto Joven
8.
Genes Dev ; 33(23-24): 1657-1672, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727774

RESUMEN

In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Muerte Celular/fisiología , Activación de Linfocitos/fisiología , Células T Asesinas Naturales/fisiología , Obesidad/fisiopatología , Células 3T3 , Adipocitos/inmunología , Adipocitos/metabolismo , Animales , Proliferación Celular , Proteína Ligando Fas/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor fas/metabolismo
9.
Physiol Rev ; 99(4): 1701-1763, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339053

RESUMEN

Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.


Asunto(s)
Tejido Adiposo/fisiopatología , Presión Sanguínea , Diabetes Mellitus/fisiopatología , Hipertensión/fisiopatología , Obesidad/fisiopatología , Adipoquinas/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Adiposidad , Animales , Diabetes Mellitus/epidemiología , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Humanos , Hipertensión/epidemiología , Hipertensión/inmunología , Hipertensión/metabolismo , Mediadores de Inflamación/metabolismo , Obesidad/epidemiología , Obesidad/inmunología , Obesidad/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
10.
Circ Res ; 135(5): 614-628, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011638

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS: In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.


Asunto(s)
Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Volumen Sistólico , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Volumen Sistólico/efectos de los fármacos , Ratones , Masculino , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Receptores de Glucagón/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Obesos , Función Ventricular Izquierda/efectos de los fármacos , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/complicaciones , Modelos Animales de Enfermedad , Transducción de Señal
11.
Physiology (Bethesda) ; 39(4): 0, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530221

RESUMEN

Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.


Asunto(s)
Astrocitos , Metabolismo Energético , Hipotálamo , Neuronas , Astrocitos/metabolismo , Astrocitos/fisiología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Animales , Humanos , Neuronas/fisiología , Neuronas/metabolismo , Metabolismo Energético/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología
12.
Cell ; 143(1): 9-12, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20887884

RESUMEN

This year, the Albert Lasker Basic Medical Research Award will be shared by Douglas Coleman and Jeffrey Friedman for their discovery of leptin, a hormone that regulates appetite and body weight. By uncovering a critical physiologic system, their discovery markedly accelerated our capacity to apply molecular and genetic techniques to understand obesity.


Asunto(s)
Distinciones y Premios , Leptina/genética , Leptina/metabolismo , Fisiología/historia , Apetito , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Obesidad/fisiopatología , Estados Unidos
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38934712

RESUMEN

In addition to metabolic and cardiovascular disorders, obesity is associated with cognitive deficits in humans and animal models. We have previously shown that obesogenic high-fat and sugar diet intake during adolescence (adoHFSD) impairs hippocampus (HPC)-dependent memory in rodents. These results were obtained in males only and it remains to evaluate whether adoHFSD has similar effect in females. Therefore, here, we investigated the effects of adoHFSD consumption on HPC-dependent contextual fear memory and associated brain activation in male and female mice. Exposure to adoHFSD increased fat mass accumulation and glucose levels in both males and females but impaired contextual fear memory only in males. Compared with females, contextual fear conditioning induced higher neuronal activation in the dorsal and ventral HPC (CA1 and CA3 subfields) as well as in the medial prefrontal cortex in males. Also, adoHFSD-fed males showed enhanced c-Fos expression in the dorsal HPC, particularly in the dentate gyrus, and in the basolateral amygdala compared with the other groups. Finally, chemogenetic inactivation of the dorsal HPC rescued adoHFSD-induced memory deficits in males. Our results suggest that males are more vulnerable to the effects of adoHFSD on HPC-dependent aversive memory than females, due to overactivation of the dorsal HPC.


Asunto(s)
Dieta Alta en Grasa , Miedo , Hipocampo , Memoria , Ratones Endogámicos C57BL , Obesidad , Caracteres Sexuales , Animales , Miedo/fisiología , Masculino , Femenino , Hipocampo/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/psicología , Obesidad/fisiopatología , Ratones , Memoria/fisiología , Corteza Prefrontal/metabolismo
14.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113166

RESUMEN

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Asunto(s)
Asma , Eosinofilia , Obesidad , Tomografía Computarizada por Rayos X , Humanos , Asma/diagnóstico por imagen , Asma/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/fisiopatología , Adulto , Eosinofilia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Anciano , Índice de Masa Corporal
15.
Eur Heart J ; 45(33): 3060-3068, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39013477

RESUMEN

BACKGROUND AND AIMS: Excess adiposity is associated with poorer cardiac function and adverse left ventricular (LV) remodelling. However, its importance over the adult life course on future cardiac structure and systolic and diastolic function is unknown. METHODS: A total of 1690 participants in the National Survey of Health and Development birth cohort underwent repeated adiposity [body mass index (BMI)/waist-to-hip ratio (WHR)] measurements over adulthood and investigation, including echocardiography at age 60-64 years. The relationship between LV structure [LV mass (LVM), relative wall thickness, and LV internal diameter in diastole (LVIDd)] and function (diastolic: E/e', e', and left atrial volume indexed to body surface area; systolic: ejection fraction, S', and myocardial contraction fraction) was investigated using multivariable linear regression models. RESULTS: Increased BMI from age 20 years onwards was associated with greater LVM and LVIDd independent of confounders. Associations remained independent of current BMI for LVIDd and at age 26, 43, and 53 years for LVM. Increased BMI from 43 years onwards was associated with greater relative wall thickness, but not when BMI at age 60-64 years was accounted for. Increased BMI at age 26, 36, and 53 years and at 20 years onwards was associated with lower ejection fraction and myocardial contraction fraction, respectively, but not independently of BMI at 60-64 years. Higher BMI from 20 years onwards was associated with poorer diastolic function independent of confounders. Associations between BMI and left atrial volume indexed to body surface area persisted from 26 years onwards after adjustment for BMI at 60-64 years. Similar relationships were observed for WHR from age 43 years onwards. CONCLUSIONS: Higher adiposity (BMI/WHR) over adulthood is associated with evidence of adverse cardiac structure and function. Some of these associations are independent of adiposity in later life.


Asunto(s)
Adiposidad , Índice de Masa Corporal , Humanos , Persona de Mediana Edad , Femenino , Masculino , Adiposidad/fisiología , Adulto , Remodelación Ventricular/fisiología , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Obesidad/fisiopatología , Obesidad/complicaciones , Adulto Joven , Relación Cintura-Cadera , Volumen Sistólico/fisiología , Diástole/fisiología
16.
Annu Rev Physiol ; 83: 279-301, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33158377

RESUMEN

Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Hipotálamo/fisiología , Animales , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Humanos , Neuronas/fisiología , Obesidad/fisiopatología
17.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511219

RESUMEN

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Asunto(s)
Lesión Renal Aguda , Riñón , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Masculino , Femenino , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Riñón/fisiopatología , Riñón/patología , Riñón/metabolismo , Factores Sexuales , Obesidad/complicaciones , Obesidad/fisiopatología , Dieta Alta en Grasa , Embarazo , Lipocalina 2/metabolismo , Obesidad Materna/metabolismo , Obesidad Materna/complicaciones , Obesidad Materna/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Ratones , Factores de Riesgo , Modelos Animales de Enfermedad , Biomarcadores/sangre
18.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L406-L414, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39104315

RESUMEN

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice; however, the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. In addition, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared with their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.NEW & NOTEWORTHY Our study shows that obesity impairs airway mucociliary clearance (MCC), an essential physical innate defense mechanism for viral infection. Mechanically, this is likely due to the obesity-induced downregulation of cilia-related genes and attenuation of extracellular ATP release. This study provides novel insights into the mechanisms driving the higher susceptibility and severity of viral respiratory infections in individuals with obesity.


Asunto(s)
Cilios , Depuración Mucociliar , Obesidad , Mucosa Respiratoria , Animales , Cilios/metabolismo , Cilios/patología , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Obesidad/complicaciones , Ratones , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Ratones Endogámicos C57BL , Adenosina Trifosfato/metabolismo , Masculino , Tráquea/metabolismo , Tráquea/virología , Tráquea/patología , Virus de la Influenza A , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/metabolismo , Dieta Alta en Grasa/efectos adversos
19.
Am J Physiol Endocrinol Metab ; 326(5): E640-E647, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536038

RESUMEN

Long-term hyperglycemia in individuals with type 2 diabetes (T2D) can detrimentally impact pulmonary function and muscle oxygenation. As a result, these factors can impede the body's adaptation to physical exertion. We aimed to evaluate the oxygen pathway during maximal exercise among overweight/obese individuals with type 2 diabetes free from complications, in comparison with a group of matched overweight/obese individuals without diabetes, specifically concentrating on the effects on pulmonary function and muscle oxygenation. Fifteen overweight/obese adults with type 2 diabetes [glycated hemoglobin (HbA1c) = 8.3 ± 1.2%] and 15 matched overweight/obese adults without diabetes underwent pre- and post exercise lung function assessment. A maximal incremental exercise test was conducted, monitoring muscle oxygenation using near-infrared spectroscopy and collecting arterial blood gas samples. Both groups exhibited normal lung volumes at rest and after exercise. Spirometric lung function did not significantly differ pre- and post exercise in either group. During maximal exercise, the type 2 diabetes group showed significantly lower augmentation in total hemoglobin and deoxygenated hemoglobin compared with the control group. Despite comparable usual physical activity levels and comparable heart rates at exhaustion, the type 2 diabetes group had a lower peak oxygen consumption than controls. No significant differences were found in arterial blood gas analyses ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) between the groups. Individuals with type 2 diabetes free from complications displayed normal pulmonary function at rest and post exercise. However, impaired skeletal muscle oxygenation during exercise, resulting from reduced limb blood volume and altered muscle deoxygenation, may contribute to the lower V̇o2peak observed in this population.NEW & NOTEWORTHY Individuals with type 2 diabetes free from micro- and macrovascular complications have normal resting pulmonary function, but their V̇o2peak is impaired due to poor skeletal muscle oxygenation during exercise. Tailoring exercise regimes for this population should prioritize interventions aimed at enhancing muscle oxygenation and blood flow improvement.


Asunto(s)
Diabetes Mellitus Tipo 2 , Músculo Esquelético , Consumo de Oxígeno , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Persona de Mediana Edad , Femenino , Consumo de Oxígeno/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Adulto , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/complicaciones , Oxígeno/metabolismo , Oxígeno/sangre , Pulmón/fisiopatología , Pulmón/metabolismo , Espectroscopía Infrarroja Corta , Sobrepeso/metabolismo , Sobrepeso/fisiopatología , Sobrepeso/complicaciones , Estudios de Casos y Controles , Pruebas de Función Respiratoria
20.
Am J Physiol Heart Circ Physiol ; 327(4): H1067-H1085, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120469

RESUMEN

Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.


Asunto(s)
Envejecimiento , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Animales , Femenino , Masculino , Envejecimiento/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad/fisiopatología , Factores Sexuales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/deficiencia , Factores de Edad , Modelos Animales de Enfermedad , Función Ventricular Izquierda , Factores de Riesgo Cardiometabólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA