RESUMEN
Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.
Asunto(s)
Ojo , Fósiles , Filogenia , Vertebrados/clasificación , Animales , Ojo/química , Ojo/citología , Ojo/ultraestructura , Illinois , Melanosomas/ultraestructura , Microscopía Electrónica de Rastreo , Epitelio Pigmentado de la Retina/química , Epitelio Pigmentado de la Retina/ultraestructura , Vertebrados/anatomía & histologíaRESUMEN
Jumping spiders (Salticidae) rely on accurate depth perception for predation and navigation. They accomplish depth perception, despite their tiny brains, by using specialized optics. Each principal eye includes a multitiered retina that simultaneously receives multiple images with different amounts of defocus, and from these images, distance is decoded with relatively little computation. We introduce a compact depth sensor that is inspired by the jumping spider. It combines metalens optics, which modifies the phase of incident light at a subwavelength scale, with efficient computations to measure depth from image defocus. Instead of using a multitiered retina to transduce multiple simultaneous images, the sensor uses a metalens to split the light that passes through an aperture and concurrently form 2 differently defocused images at distinct regions of a single planar photosensor. We demonstrate a system that deploys a 3-mm-diameter metalens to measure depth over a 10-cm distance range, using fewer than 700 floating point operations per output pixel. Compared with previous passive depth sensors, our metalens depth sensor is compact, single-shot, and requires a small amount of computation. This integration of nanophotonics and efficient computation brings artificial depth sensing closer to being feasible on millimeter-scale, microwatts platforms such as microrobots and microsensor networks.
Asunto(s)
Cristalino/química , Óptica y Fotónica/instrumentación , Arañas/fisiología , Animales , Percepción de Profundidad , Diseño de Equipo , Ojo/química , Metales/química , Visión OcularRESUMEN
BACKGROUND: Favipiravir is used in treatment of Covid-19 patients. We aimed to share of ocular surface fluorescence in a patient after Favipiravir treatment in this case report. CASE PRESENTATION: A 20-year-old male patient declared no known systemic disease prior to Covid-19. He applied to us with blurry vision and blue light reflection after Covid-19 treatment with Favipiravir. We observed bilateral fluorescence on his eyes and fluorescence of his nails. Biomicroscopic examination was insignificant. CONCLUSION: We investigated the fluorescence of favipiravir tablets under ultraviolet light. Drug demonstrated fluorescence. We recorded the favipiravir fluorescence in-vitro. This appears to be a strong evidence in terms of the linkage between the fluorescence of the ocular surface and favipiravir.
Asunto(s)
Amidas/efectos adversos , Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Ojo/química , Pirazinas/efectos adversos , Adulto , Amidas/administración & dosificación , Amidas/química , Antivirales/administración & dosificación , Antivirales/química , COVID-19/virología , Ojo/virología , Fluorescencia , Humanos , Masculino , Pirazinas/administración & dosificación , Pirazinas/química , SARS-CoV-2/fisiologíaRESUMEN
A robust ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was proven effective for simultaneous characterization of six flavonoids including quercetin-3-O-beta-galactoside (Q3GAL), quercetin-3-O-beta-glucoside (Q3GLU), quercetin-3-(2-galloylglucoside) (Q3GG), kaempferol-3-O-beta-galactoside (K3GAL), kaempferol-3-O-beta-glucoside (K3GLU), and kaempferol-3-(2-galloylglucoside) (K3GG) in rat eyes. By investigation of corresponding validation parameters (linearity, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability), the method was verified to be within current acceptable criteria. Thereafter, the validated method enabled quantification of the six compounds successful in rat eyes after oral administration of ethanol extract Diospyros kaki (EEDK) at 0, 3, 15, 35, 60, 120 min.
Asunto(s)
Cromatografía Líquida de Alta Presión , Diospyros/química , Ojo/química , Flavonoides/análisis , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Administración Oral , Animales , Diospyros/metabolismo , Ojo/metabolismo , Flavonoides/administración & dosificación , Galactósidos/administración & dosificación , Galactósidos/análisis , Quempferoles/administración & dosificación , Quempferoles/análisis , Masculino , Monosacáridos/administración & dosificación , Monosacáridos/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Quercetina/administración & dosificación , Quercetina/análogos & derivados , Quercetina/análisis , RatasRESUMEN
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.
Asunto(s)
Complemento C3/antagonistas & inhibidores , Ojo/química , Anciano , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Inyecciones Intravítreas , Macaca fascicularis , Retina/química , Factores de Tiempo , Distribución TisularRESUMEN
There are few model fish that are both edible and suitable for use in the laboratory. The Japanese loach (Misgurnus anguillicaudatus) is a traditional food in Japan, but is highly neglected despite its great nutritional value. To understand its circadian system and photic input pathway for synchronization of physiological activities to environmental light-dark cycles, we measured locomotor activity under light-dark and constant dark (DD) conditions. Locomotor activity was found to be higher in the nighttime than daytime, and its rhythmicity was weakened under DD conditions. The nocturnal activity of the Japanese loach is mainly controlled by environmental light, rather than the circadian clock. We explored the circadian regulation and light-responsiveness of clock gene expression in the eyes of loaches. The daily expression profiles of its mRNA revealed that most of the examined Cry and Per genes were likely regulated by internal circadian and/or environmental light signals. Among the Opsin genes transcribed in the eye, we detected the retinal photopigment porphyropsin at the protein level, which was lower than in mice. This property of loach eyes prompted us to analyze the locomotor activities of eye-enucleated fish. As a result, they still showed nocturnal circadian activity. Thus, it is likely that extraocular photoreceptive tissue(s) also contribute to the photic input pathway, although loach eyes are a circadian photosensitive tissue. This suggests that the loach mainly uses not its vision but other stimuli, such as mechanical or chemical stimuli, detected by barbels, to coordinate its nocturnal behavior.
Asunto(s)
Relojes Circadianos/genética , Cipriniformes/genética , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Cipriniformes/fisiología , Ojo/química , Ojo/metabolismo , Femenino , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Luz , Locomoción/fisiología , Masculino , Fenómenos Fisiológicos Oculares , ARN MensajeroRESUMEN
The neurotoxic non-protein amino acid ß-N-methylamino-l-alanine (BMAA) is connected to the development of neurodegenerative diseases. BMAA has been shown to accumulate in aquatic ecosystems, and filter-feeding molluscs seem particularly susceptible to BMAA accumulation. The blue mussels farmed along the Swedish coastline in the Baltic Sea are, due to their small size, exclusively used to produce feed for chicken and fish in the agro-aqua cycle. We have investigated the possible biotransfer of BMAA from mussels, via mussel-based feed, into chickens. Chickens were divided into two groups, the control and the treatment. BMAA was extracted from the muscle, liver, brain, and eye tissues in both chicken groups; a UPLC-MS/MS method was subsequently used to quantify BMAA. The results indicate detectable concentrations of BMAA in both chicken groups. However, the BMAA concentration in chicken was 5.65 times higher in the treatment group than the control group, with the highest concentration found in muscle tissue extracted from the treatment group chickens. These data suggest that there is a BMAA transfer route within the agro-aqua cycle, so further investigation is recommended before using mussel-based feed in the chicken industry.
Asunto(s)
Aminoácidos Diaminos/toxicidad , Alimentación Animal/toxicidad , Bivalvos/química , Pollos , Enfermedades Neurodegenerativas/veterinaria , Enfermedades de las Aves de Corral/inducido químicamente , Aminoácidos Diaminos/análisis , Crianza de Animales Domésticos/métodos , Animales , Acuicultura , Química Encefálica , Toxinas de Cianobacterias , Ojo/química , Hígado/química , Músculos/química , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Agua de Mar/química , SueciaRESUMEN
The evolution of terrestrial vertebrates, starting around 385 million years ago, is an iconic moment in evolution that brings to mind images of fish transforming into four-legged animals. Here, we show that this radical change in body shape was preceded by an equally dramatic change in sensory abilities akin to transitioning from seeing over short distances in a dense fog to seeing over long distances on a clear day. Measurements of eye sockets and simulations of their evolution show that eyes nearly tripled in size just before vertebrates began living on land. Computational simulations of these animal's visual ecology show that for viewing objects through water, the increase in eye size provided a negligible increase in performance. However, when viewing objects through air, the increase in eye size provided a large increase in performance. The jump in eye size was, therefore, unlikely to have arisen for seeing through water and instead points to an unexpected hybrid of seeing through air while still primarily inhabiting water. Our results and several anatomical innovations arising at the same time suggest lifestyle similarity to crocodiles. The consequent combination of the increase in eye size and vision through air would have conferred a 1 million-fold increase in the amount of space within which objects could be seen. The "buena vista" hypothesis that our data suggest is that seeing opportunities from afar played a role in the subsequent evolution of fully terrestrial limbs as well as the emergence of elaborated action sequences through planning circuits in the nervous system.
Asunto(s)
Evolución Biológica , Vertebrados/fisiología , Animales , Ecosistema , Ojo/química , Ojo/crecimiento & desarrollo , Fenómenos Fisiológicos Oculares , Tamaño de los Órganos , Filogenia , Vertebrados/clasificación , Vertebrados/genética , Vertebrados/crecimiento & desarrollo , Visión OcularRESUMEN
In this paper, we present the incurred sample reanalysis (ISR) data for cefuroxime in various ocular tissues of rabbits. Based on the cefuroxime concentration vs. time profile in various ocular tissues, three chosen time points enabled ISR assessment. Cefuroxime was quantitated in the ocular tissues using a published liquid chromatography-electrospray ionization/tandem mass spectrometry method operated under the multiple reaction-monitoring mode in positive ion mode. Regardless of the ocular tissue, the linearity range was 12.7-2760 ng/ml with a correlation coefficient (r2 ) of ≥0.996. All of the ISR samples representing various ocular tissues met the acceptance criteria. To the best of our knowledge, this is the first report showing the ISR of ocular tissues in any species.
Asunto(s)
Cefuroxima/análisis , Cromatografía Liquida/métodos , Ojo/química , Espectrometría de Masas en Tándem/métodos , Animales , Modelos Lineales , Conejos , Manejo de EspecímenesRESUMEN
Elastic fibers comprising fibrillin microfibrils and elastin are present in many tissues, including the skin, lungs, and arteries, where they confer elasticity and resilience. Although fibrillin microfibrils play distinct and tissue-specific functional roles, it is unclear whether their ultrastructure and composition differ between elastin-rich (skin) and elastin-poor (ciliary body and zonule) organs or after in vitro synthesis by cultured cells. Here, we used atomic force microscopy, which revealed that the bead morphology of fibrillin microfibrils isolated from the human eye differs from those isolated from the skin. Using newly developed pre-MS preparation methods and LC-MS/MS, we detected tissue-specific regions of the fibrillin-1 primary structure that were differentially susceptible to proteolytic extraction. Comparing tissue- and culture-derived microfibrils, we found that dermis- and dermal fibroblast-derived fibrillin microfibrils differ in both bead morphology and periodicity and also exhibit regional differences in fibrillin-1 proteolytic susceptibility. In contrast, collagen VI microfibrils from the same dermal or fibroblast samples were invariant in ultrastructure (periodicity) and protease susceptibility. Finally, we observed that skin- and eye-derived microfibril suspensions were enriched in elastic fiber- and basement membrane-associated proteins, respectively. LC-MS/MS also identified proteins (such as calreticulin and protein-disulfide isomerase) that are potentially fundamental to fibrillin microfibril biology, regardless of their tissue source. Fibrillin microfibrils synthesized in cell culture lacked some of these key proteins (MFAP2 and -4 and fibrillin-2). These results showcase the structural diversity of these key extracellular matrix assemblies, which may relate to their distinct roles in the tissues where they reside.
Asunto(s)
Fibrilina-1/análisis , Microfibrillas/química , Anciano , Células Cultivadas , Colágeno Tipo VI/análisis , Ojo/química , Femenino , Fibrilina-1/ultraestructura , Humanos , Masculino , Microfibrillas/ultraestructura , Microscopía de Fuerza Atómica , Conformación Proteica , Piel/químicaRESUMEN
The cystine-glutamate exchanger (system xc-) is responsible for the exchange of extracellular cystine for intracellular glutamate. In this study, we mapped the expression of xCT, the light chain subunit of system xc- in the different tissues of 3-6-week-old mouse (C57BL/6J) eye and have used an xCT knockout mouse to verify labelling specificity. Moreover, using the xCT knockout mouse, we investigated whether xCT was involved in maintaining extracellular redox balance in the eye. xCT transcript and protein were present in the cornea, lens and retina of wild-type mice, but not knockout mice. xCT was localised to the corneal epithelium, and the lens epithelium and cortical fibre cells but was absent in the iris. xCT localisation could not be determined in the ciliary body or retina, since xCT labelling was also detected in the knockout indicating a lack of specificity of the xCT antibody in tissues of a neural origin. Intracellular cysteine and cystine concentrations were similar in the wild-type and xCT knockout mouse for the cornea, lens, and retina. While extracellular cysteine levels were similar between the plasma, aqueous humour, and vitreous humour of the wild-type and xCT knockout mouse, extracellular cystine levels in the plasma and aqueous were significantly elevated in the xCT knockout mouse relative to the wild type. This suggests that loss of xCT results in an increased oxidative environment, particularly within the anterior chamber of the eye in which the aqueous humour resides. How this oxidative shift impacts ocular tissues that interface with the aqueous humour over time will be the focus of future work.
Asunto(s)
Sistema de Transporte de Aminoácidos y+/análisis , Sistema de Transporte de Aminoácidos y+/metabolismo , Ojo/química , Ojo/metabolismo , Sistema de Transporte de Aminoácidos y+/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-ReducciónRESUMEN
PURPOSE OF REVIEW: Diabetic retinopathy (DR) is the leading cause of acquired vision loss in adults across the globe. Early identification and treatment of patients with DR is paramount for vision preservation. The aim of this review paper is to outline current and new imaging techniques and biomarkers that are valuable for clinical diagnosis and management of DR. RECENT FINDINGS: Ultrawide field imaging and automated deep learning algorithms are recent advancements on traditional fundus photography and fluorescein angiography. Optical coherence tomography (OCT) and OCT angiography are techniques that image retinal anatomy and vasculature and OCT is routinely used to monitor response to treatment. Many circulating, vitreous, and genetic biomarkers have been studied to facilitate disease detection and development of new treatments. Recent advancements in retinal imaging and identification of promising new biomarkers for DR have the potential to increase detection, risk stratification, and treatment for patients with DR.
Asunto(s)
Retinopatía Diabética/diagnóstico por imagen , Edema Macular/diagnóstico por imagen , Retina/diagnóstico por imagen , Angiografía , Biomarcadores/análisis , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/genética , Ojo/química , Angiografía con Fluoresceína , Pruebas Genéticas , Humanos , Edema Macular/diagnóstico , Edema Macular/genética , Fotograbar , Tomografía de Coherencia ÓpticaRESUMEN
Tiopronin, formally 2-mercaptopropionylglycine (MPG), is currently prescribed to treat cystinuria and rheumatoid arthritis, and its antioxidant properties have led to its investigation as a treatment for cataracts, a condition in which oxidative stress is strongly implicated. To study its accumulation in the eye, a reliable, isocratic HPLC method was developed for the determination of MPG and its primary metabolite 2-mercaptopropionic acid (MPA) in plasma and relevant ocular tissues. This method utilizes pre-column derivatization and fluorescence detection. The 3.5 min separation enables high-throughput analysis, and validation experiments demonstrated that this method is suitable for evaluating ocular accumulation of MPG and MPA at concentrations as low as 66 and 33 nm, respectively. Excellent linearity was achieved over the working concentration range with R2 > 0.997. Extraction recovery was reproducible within each matrix and exceeded 97%. Accuracy was within 13.3% relative error, and intra- and inter-day precisions were within 6% CV and 7% CV, respectively. Sample stability was demonstrated under various storage conditions, and the use of an internal standard conferred exceptional ruggedness. This method has been successfully applied for the determination of MPG and MPA in plasma, cornea, lens and retina following intraperitoneal administration of the drug in Wistar rats.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ojo/química , Tiopronina/análisis , Animales , Límite de Detección , Modelos Lineales , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia , Tiopronina/sangre , Tiopronina/química , Tiopronina/farmacocinéticaRESUMEN
The human eye is a complex organ consisting of multiple compartments with unique and specialized properties that reflect their varied functions. Although there have been advancements in ocular imaging and therapeutics over the past decade, the pathogenesis of many common eye diseases remains poorly understood. Proteomics is an invaluable tool to gain insight into pathogenesis, diagnosis, and treatment of eye diseases. By 2013, when the Human Eye Proteome Project (also known as the EyeOme) was founded, there were 4842 nonredundant proteins identified in the human eye. Twenty-three recent papers on the human eye proteome were identified in PubMed searches. These papers were used to compile an updated resource of 9782 nonredundant proteins in the human eye. This updated catalogue sheds light on the molecular makeup of previously undescribed proteomes within the human eye, including optic nerve, sclera, iris, and ciliary body, while adding additional proteins to previously characterized proteomes such as aqueous humor, lens, vitreous, retina, and retinal pigment epithelium/choroid. Although considerable advances have been made to characterize the complete proteome of the human eye, additional high-quality data are needed to confirm and quantify previously discovered eye proteins in both health and disease.
Asunto(s)
Proteínas del Ojo/análisis , Ojo/química , Proteoma/análisis , HumanosRESUMEN
Colour vision is known to have arisen only twice-once in Vertebrata and once within the Ecdysozoa, in Arthropoda. However, the evolutionary history of ecdysozoan vision is unclear. At the molecular level, visual pigments, composed of a chromophore and a protein belonging to the opsin family, have different spectral sensitivities and these mediate colour vision. At the morphological level, ecdysozoan vision is conveyed by eyes of variable levels of complexity; from the simple ocelli observed in the velvet worms (phylum Onychophora) to the marvellously complex eyes of insects, spiders, and crustaceans. Here, we explore the evolution of ecdysozoan vision at both the molecular and morphological level; combining analysis of a large-scale opsin dataset that includes previously unknown ecdysozoan opsins with morphological analyses of key Cambrian fossils with preserved eye structures. We found that while several non-arthropod ecdysozoan lineages have multiple opsins, arthropod multi-opsin vision evolved through a series of gene duplications that were fixed in a period of 35-71 million years (Ma) along the stem arthropod lineage. Our integrative study of the fossil and molecular record of vision indicates that fossils with more complex eyes were likely to have possessed a larger complement of opsin genes.
Asunto(s)
Evolución Molecular , Fósiles , Visión Ocular/fisiología , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , Artrópodos/fisiología , Evolución Biológica , Ojo/anatomía & histología , Ojo/químicaRESUMEN
Purpose: To compare methods for homogenizing the mouse whole eye or retina for RNA extraction. Methods: We tested five homogenization techniques for the whole eye and the retina. Two established shearing techniques were a version of the Potter-Elvehjem homogenizer, which uses a plastic pellet pestle in a microfuge tube, and a Dounce homogenizer. Two modern bead-beating methods used commercially manufactured devices, the Next Advance Bullet Blender and the Qiagen TissueLyser LT. The last method involved vortex mixing multiple samples simultaneously in a buffer containing a stainless-steel set screw, a novel approach. RNA was extracted from the tissue after each technique was used. Degradation of RNA was measured with the RNA integrity number (RIN score) after electrophoresis on an Agilent BioAnalyzer RNA LabChip. Nucleic acid yields were measured with ultraviolet (UV) spectroscopy in a BioTek Synergy H1 Hybrid plate reader. The purity of the nucleic acids was assessed with the mean absorbance ratio (A260/A280). The preparation time per sample was measured with a digital stopwatch. Costs of necessary consumables were calculated per ten samples. Results: The RIN scores for all homogenization methods and both tissue types ranged from 7.75±0.64 to 8.78±0.18; none were statistically significantly different. The total RNA yield per whole eye from the bead-based methods ranged from 7,700 to 9,800 ng and from 3,000 to 4,600 ng for the pellet pestle and Dounce shearing methods, respectively. The total RNA yield per retina from the bead-based methods ranged from 4,600 to 8,400 ng and from 2,200 to 7,400 ng for the pellet pestle and Dounce shearing methods, respectively. Homogenization was faster using the bead-based methods (about 15 min for ten samples) because multiple samples could be run simultaneously compared to the shearing methods that require samples be homogenized individually (about 45-60 min per ten samples). The costs in consumables for the methods tested ranged from $2.60 to $14.70 per ten samples. The major differences in overall costs come in the form of one-time equipment purchases, which can range from one hundred to thousands of dollars. The bead-based methods required less technician involvement and had less potential for sample contamination than the shearing methods. Conclusions: The purity and quality of RNA were similar across all methods for both tissue types. The novel set screw method and the two bead-based methods (bullet blender and TissueLyser) outperformed the two shearing methods (the pellet pestle and Dounce techniques) in total RNA yields for the whole eye. Although the bullet blender, TissueLyser, and set screw methods produced comparable levels of RNA yield, purity, and quality, the set screw method was less expensive. Researchers seeking the efficiency of sophisticated bead homogenization equipment without the high equipment costs might consider this novel method.
Asunto(s)
Ojo/química , Técnicas Genéticas/instrumentación , ARN/aislamiento & purificación , Retina/química , Manejo de Especímenes/métodos , Animales , Ratones , Ratones Endogámicos BALB CRESUMEN
RATIONALE: Anthocyanins, which belong to a class of molecules called flavonoids, are known to have beneficial effects for both humans and animals. Many physiological functions have been attributed to anthocyanins since ancient times. The most important function is the relief of eyestrain, but the biodistribution of anthocyanins remains unknown. In this study, we analyzed the kinetics of anthocyanin species in mice eyeballs and surrounding tissues. METHODS: We used mice that were administered bilberry extract solution intraperitoneally. After harvesting eyeballs, cross-sections were prepared using a cryostat and analyzed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). RESULTS: Various ions of anthocyanin species, m/z 419, 449, 463, 465, 479, and 493, were observed in MALDI-MSI spectra. Most of these peaks corresponded to places considered to be extraocular muscles with the outer layer of the retina. CONCLUSIONS: Through MALDI-MSI and MALDI-MS/MS analyses, we demonstrated that anthocyanin species are distributed at muscle tissues with the outer layer of the retina. It is speculated that anthocyanin species directly improve eyestrain at the extraocular muscles.
Asunto(s)
Antocianinas/química , Ojo/química , Animales , Antocianinas/metabolismo , Ojo/metabolismo , Masculino , Ratones , Retina/química , Retina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Distribución TisularRESUMEN
BACKGROUND: Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. RESULTS: Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. CONCLUSIONS: This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.
Asunto(s)
Fenómenos Fisiológicos Oculares , Perciformes/fisiología , Adaptación Fisiológica , Animales , Ojo/química , Fluorescencia , LuzRESUMEN
Larvae of the weakly blue-luminescent fungus gnat Keroplatus nipponicus possess on either side of their heads a small black stemmatal eye with a plano-convex lens approximately 25 µm in diameter. In total, 12-14 retinula cells give rise to a centrally fused rhabdom of up to 8 µm in diameter. The rhabdom's constituent microvilli, approximately 70 nm in width, are roughly orthogonally oriented, a requirement for polarization sensitivity. Screening pigment granules are abundant in the retinula cells and measure at least 1 µm in diameter. In comparison with the stemmatal eye of the brightly luminescent Arachnocampa luminosa, that of K. nipponicus is considerably smaller with a poorer developed lens and a rhabdom that is less voluminous, but possesses wider microvilli. Although the larval eye of K. nipponicus can be expected to be functional, as the larvae react to light with a behavioural response, the eyes are probably mainly involved in the detection of ambient light levels and not, as in A. luminosa, also in responding to the luminescence of nearby conspecifics.
Asunto(s)
Dípteros/química , Ojo/química , Larva/crecimiento & desarrollo , Nematocera/química , Animales , Dípteros/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Larva/química , Luminiscencia , Nematocera/crecimiento & desarrolloRESUMEN
We have studied the fatty acid composition of eyes of amphibiotic insects, namely, the odonate Sympetrum flaveolum. The main polyunsaturated fatty acid of odonate's eyes has been found to be 20:5n-3 (eicosapentaenoic fatty acid, EPA) rather than 18:2n-6 and 18:3n-3, which usually dominate in eyes of terrestrial insects, or 22:6n-3, which dominates in eyes of vertebrates. The prevalence of EPA in odonate's eyes probably provides a more effective transmission of light signal in this animal compared to terrestrial insects. It is important for odonates because vision plays a decisive role in finding and catching prey.