Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Biol ; 18(9): e3000833, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898188

RESUMEN

The phonological deficit in dyslexia is associated with altered low-gamma oscillatory function in left auditory cortex, but a causal relationship between oscillatory function and phonemic processing has never been established. After confirming a deficit at 30 Hz with electroencephalography (EEG), we applied 20 minutes of transcranial alternating current stimulation (tACS) to transiently restore this activity in adults with dyslexia. The intervention significantly improved phonological processing and reading accuracy as measured immediately after tACS. The effect occurred selectively for a 30-Hz stimulation in the dyslexia group. Importantly, we observed that the focal intervention over the left auditory cortex also decreased 30-Hz activity in the right superior temporal cortex, resulting in reinstating a left dominance for the oscillatory response. These findings establish a causal role of neural oscillations in phonological processing and offer solid neurophysiological grounds for a potential correction of low-gamma anomalies and for alleviating the phonological deficit in dyslexia.


Asunto(s)
Dislexia/terapia , Lectura , Percepción del Habla , Adolescente , Adulto , Corteza Auditiva/fisiopatología , Corteza Auditiva/efectos de la radiación , Dislexia/fisiopatología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Auditivos/efectos de la radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fonética , Percepción del Habla/fisiología , Percepción del Habla/efectos de la radiación , Estimulación Transcraneal de Corriente Directa/métodos , Conducta Verbal/fisiología , Conducta Verbal/efectos de la radiación , Adulto Joven
2.
J Neurosci ; 36(17): 4895-906, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122044

RESUMEN

UNLABELLED: Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT: Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.


Asunto(s)
Estimulación Acústica/métodos , Dislexia/genética , Proteínas Asociadas a Microtúbulos/genética , Sonido , Percepción del Habla/fisiología , Animales , Corteza Auditiva/fisiología , Percepción Auditiva , Femenino , Masculino , Plasticidad Neuronal/genética , Interferencia de ARN , Ratas , Percepción del Habla/genética , Percepción del Habla/efectos de la radiación
3.
Neuroscience ; 343: 276-283, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-27019129

RESUMEN

Perception of speech sounds is affected by observing facial motion. Incongruence between speech sounds and watching somebody articulating may influence the perception of auditory syllable, referred to as the McGurk effect. We tested the degree to which silent articulation of a syllable also affects speech perception and searched for its neural correlates. Listeners were instructed to identify the auditory syllables /pa/ and /ta/ while silently articulating congruent/incongruent syllables or observing videos of a speaker's face articulating them. As a baseline, we included an auditory-only condition without competing visual or sensorimotor input. As expected, perception of sounds degraded when incongruent syllables were observed, and also when they were silently articulated, albeit to a lesser extent. This degrading was accompanied by significant amplitude modulations in the beta frequency band in right superior temporal areas. In these areas, the event-related beta activity during congruent conditions was phase-locked to responses evoked during the auditory-only condition. We conclude that proper temporal alignment of different input streams in right superior temporal areas is mandatory for both audiovisual and audiomotor speech integration.


Asunto(s)
Reconocimiento Facial/fisiología , Percepción del Habla/efectos de la radiación , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Ritmo beta , Electromiografía , Femenino , Humanos , Imaginación/fisiología , Masculino , Pruebas Neuropsicológicas , Percepción del Habla/fisiología
4.
Neurosci Lett ; 478(1): 19-23, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20435090

RESUMEN

The aim of the present study was to examine the patterns of activation of the P600 waveform of the event-related potentials (ERP), applying principal component analysis (PCA) and repeated measures ANOVA, and whether these patterns are RF and gender dependent. The ERPs of thirty-nine healthy subjects (20 male and 19 female) were recorded during an auditory memory task in the presence and absence of RF, similar to that emitted by mobile phones. Both PCA and ANOVA produced congruent results, showing that activation of the P600 component occurs early and more intensely in the region of the posterior electrodes and in a less intense manner in the central electrodes. Conversely, the activation at the anterior electrodes arises later with a considerably reduced intensity. In the absence of RF female subjects exhibited significantly lower amplitudes at anterior electrodes and earlier latencies at central electrodes than male subjects. These differences disappear in the presence of RF. Consequently, the P600 component follows distinct patterns of activation in the anterior, central and posterior brain areas and gender differences are observed simultaneously at several electrodes within these areas. Finally, the gender-related functional architecture with regard the P600 component appears to be RF sensitive. In conclusion, the application of the PCA procedure provides an adequate model of the spatially distributed event-related dynamics that correspond to the P600 waveform.


Asunto(s)
Potenciales Evocados Auditivos , Recuerdo Mental , Percepción del Habla , Estimulación Acústica , Adulto , Teléfono Celular , Electroencefalografía , Campos Electromagnéticos , Potenciales Evocados Auditivos/efectos de la radiación , Femenino , Humanos , Masculino , Recuerdo Mental/efectos de la radiación , Análisis de Componente Principal , Factores Sexuales , Percepción del Habla/efectos de la radiación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA