Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(3): 632-643.e12, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607510

RESUMEN

Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/genética , ARN Interferente Pequeño/genética , Animales , Elementos Transponibles de ADN , Gammaretrovirus/metabolismo , Gammaretrovirus/patogenicidad , Productos del Gen env/genética , Productos del Gen env/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Productos del Gen pol/genética , Productos del Gen pol/metabolismo , Genoma , Células Germinativas/metabolismo , Células Germinativas/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Phascolarctidae/virología , Empalme del ARN , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Interferente Pequeño/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943984

RESUMEN

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Asunto(s)
Retrovirus Endógenos , Evolución Molecular , Gammaretrovirus , Phascolarctidae , Animales , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variación Genética , Nueva Gales del Sur , Phascolarctidae/virología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Victoria
3.
Proc Natl Acad Sci U S A ; 119(25): e2201844119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696585

RESUMEN

Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-ß) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-ß ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-ß retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-ß retroviruses in the Australasian fauna.


Asunto(s)
Betaretrovirus , Retrovirus Endógenos , Interacciones Microbiota-Huesped , Phascolarctidae , Infecciones por Retroviridae , Animales , Betaretrovirus/genética , Retrovirus Endógenos/genética , Evolución Molecular , Genoma , Genómica , Phascolarctidae/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología
4.
J Virol ; 96(19): e0133222, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106874

RESUMEN

Mammalian TRIM7 is an antiviral protein that inhibits multiple human enteroviruses by degrading the viral 2BC protein. Whether TRIM7 is reciprocally targeted by enteroviruses is not known. Here, we report that the 3C protease (3Cpro) from two enteroviruses, coxsackievirus B3 (CVB3) and poliovirus, targets TRIM7 for cleavage. CVB3 3Cpro cleaves TRIM7 at glutamine 24 (Q24), resulting in a truncated TRIM7 that fails to inhibit CVB3 due to dampened E3 ubiquitin ligase activity. TRIM7 Q24 is highly conserved across mammals, except in marsupials, which instead have a naturally occurring histidine (H24) that is not subject to 3Cpro cleavage. Marsupials also express two isoforms of TRIM7, and the two proteins from koalas have distinct antiviral activities. The longer isoform contains an additional exon due to alternate splice site usage. This additional exon contains a unique 3Cpro cleavage site, suggesting that certain enteroviruses may have evolved to target marsupial TRIM7 even if the canonical Q24 is missing. Combined with computational analyses indicating that TRIM7 is rapidly evolving, our data raise the possibility that TRIM7 may be targeted by enterovirus evasion strategies and that evolution of TRIM7 across mammals may have conferred unique antiviral properties. IMPORTANCE Enteroviruses are significant human pathogens that cause viral myocarditis, pancreatitis, and meningitis. Knowing how the host controls these viruses and how the viruses may evade host restriction is important for understanding fundamental concepts in antiviral immunity and for informing potential therapeutic interventions. In this study, we demonstrate that coxsackievirus B3 uses its virally encoded protease to target the host antiviral protein TRIM7 for cleavage, suggesting a potential mechanism of viral immune evasion. We additionally show that TRIM7 has evolved in certain mammalian lineages to express protein variants with distinct antiviral activities and susceptibilities to viral protease-mediated cleavage.


Asunto(s)
Proteasas Virales 3C , Infecciones por Enterovirus , Enterovirus , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteasas Virales 3C/metabolismo , Animales , Enterovirus/enzimología , Glutamina , Histidina , Interacciones Huésped-Patógeno , Phascolarctidae/virología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760889

RESUMEN

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Asunto(s)
COVID-19/enzimología , COVID-19/genética , Peptidil-Dipeptidasa A/genética , Receptores Virales/genética , SARS-CoV-2/fisiología , Animales , Secuencia de Bases , COVID-19/virología , Especificidad del Huésped , Humanos , Ratones/genética , Ratones/virología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Phascolarctidae/genética , Phascolarctidae/virología , Receptores Virales/metabolismo , SARS-CoV-2/genética , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
6.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284399

RESUMEN

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Asunto(s)
Quirópteros/virología , Gammaretrovirus/aislamiento & purificación , Animales , Australia , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Phascolarctidae/virología
7.
Curr Issues Mol Biol ; 43(1): 52-64, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946297

RESUMEN

Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host's immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host's survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.


Asunto(s)
Citocinas/inmunología , Phascolarctidae/virología , Infecciones por Retroviridae/prevención & control , Retroviridae/inmunología , Receptores Toll-Like/inmunología , Vacunación/métodos , Animales , Citocinas/metabolismo , Phascolarctidae/inmunología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Receptores Toll-Like/metabolismo
8.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188730

RESUMEN

Koala retrovirus (KoRV) is of an interest to virologists due to its currently active endogenization into the koala (Phascolarctos cinereus) genome. Although KoRV has frequently been isolated in wild and captive koala populations, its pathogenesis and transmission remain to be fully characterized, and most previous research has concentrated on adult koalas rather than on joeys. Here, we characterized KoRV isolates obtained from a deceased male joey and its parents (animals reared in a Japanese zoo) to investigate KoRV transmission mode and pathogenesis. We sequenced the KoRV long terminal repeat (LTR) and envelope genes isolated from the joey and its parents and found KoRV-A and KoRV-C in genomic DNA from both the parents and the joey. Notably, both parents were also positive for KoRV-B, whereas the joey was KoRV-B negative, further confirming that KoRV-B is an exogenous strain. The KoRV LTR sequence of the joey was considerably closer to that of its sire than its dam. For further characterization, total KoRV, KoRV-A, KoRV-B, and KoRV-C proviral loads were quantified in peripheral blood mononuclear cells from the parents and in blood samples from the joey. Total KoRV, KoRV-A, and KoRV-C proviral loads were also quantified for different tissues (bone, liver, kidney, lung, spleen, heart, and muscle) from the joey, revealing differences suggestive of a distinct tissue tropism (highest total KoRV proviral load in the spleen and lowest in bone). The amount of KoRV-C in the parents was less than that in the joey. Our findings contribute to an improved understanding of KoRV pathogenesis and transmission mode and highlight useful areas for future research.IMPORTANCE KoRV is unique among retroviruses in that one strain (KoRV-A) is undergoing endogenization, whereas the other main subtype (KoRV-B) and another subtype (KoRV-C) are reportedly exogenous strains. Its transmission and pathogenesis are of interest in the study of retroviruses and are crucial for any conservation strategy geared toward koala health. This study provides new evidence on the modes of KoRV transmission from parent koalas to their joey. We found vertical transmission of KoRV-A, confirming its endogenization, but with closer conservation between the joey and its sire than its dam (previous reports on joeys are rare but have postulated dam-to-joey vertical transmission). This is also the first report of a KoRV-B-negative joey from KoRV-B-positive parents, contrasting with the few previous reports of 100% transmission of KoRV-B from dams to joeys. Thus, the results in this study give some novel insights for the transmission mode of KoRV.


Asunto(s)
Evolución Molecular , Phascolarctidae/virología , Infecciones por Retroviridae , Retroviridae , Secuencias Repetidas Terminales , Animales , Femenino , Japón , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Masculino , Retroviridae/genética , Retroviridae/metabolismo , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria
9.
Arch Virol ; 166(7): 1893-1901, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33900468

RESUMEN

Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the impact of infection with multiple subtypes is not well understood. Accordingly, in this study, we surveyed a representative sample from a Japanese zoo population to determine the infection status for three KoRV subtypes (KoRV-A, B, and C) and to investigate the proviral and RNA load profiles in animals with single- and multiple-subtype infections, using peripheral blood mononuclear cells (PBMCs) and plasma. Six koalas were evaluated in the study; all were infected with KoRV-A, and two koalas were coinfected with non-A subtypes (KoRV-B and/or KoRV-C). The highest KoRV total RNA and viral loads in PBMCs and plasma were found in a koala infected with multiple subtypes (KoRV-A, -B and -C). The other koala infected with multiple subtypes (KoRV-A and B) showed the highest proviral PBMC load but the lowest RNA copy number in PBMC and plasma. PBMCs from this animal were cultured for further investigation, and KoRV RNA was detected in the cells and culture supernatant after 7 and/or 14 days. The koalas harboring multiple subtypes had a higher white blood cell count than those harboring only KoRV-A and were judged to be leukemic, and they subsequently died due to lymphoma. Accordingly, we conclude that coinfection with multiple KoRV subtypes may be linked to more-severe disease. In a sequence alignment, the detected KoRV-A env gene showed 100% sequence identity to the reference gene, whereas the KoRV-B and -C env genes varied from their reference sequences.


Asunto(s)
Phascolarctidae/virología , Retroviridae/genética , Animales , Células Cultivadas , Evolución Molecular , Leucocitos Mononucleares/virología , Linfoma/virología , ARN Viral/genética , Infecciones por Retroviridae , Carga Viral/genética
10.
Retrovirology ; 17(1): 34, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008414

RESUMEN

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , Animales Salvajes , Animales de Zoológico , Australia/epidemiología , Femenino , Gammaretrovirus/clasificación , Gammaretrovirus/aislamiento & purificación , Gammaretrovirus/patogenicidad , Variación Genética , Masculino , Epidemiología Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , ARN Viral/genética , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología , Estados Unidos/epidemiología , Carga Viral
11.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567986

RESUMEN

There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarctos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a ß-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.


Asunto(s)
Gammaherpesvirinae/genética , Marsupiales/virología , Phascolarctidae/virología , Pirofosfatasas/genética , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Filogenia , Transcriptoma/genética
12.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243137

RESUMEN

Koala retrovirus (KoRV) is unique in that it exists as both an exogenous and actively endogenizing gamma retrovirus of koalas. While nine subtypes of KoRV have been recognized, focused study of these subtypes in koalas over time and with different health outcomes has been lacking. Therefore, in this study, three wild koala cohorts were established and monitored to examine KoRV proviral and expression data from koalas that either remained healthy over time, began healthy before developing chlamydial cystitis, or presented with chlamydial cystitis and were treated with antibiotics. Deep sequencing of the proviral KoRV envelope gene revealed KoRV-A, -B, -D, and -F to be the major subtypes in this population and allowed for subtype-specific assays to be created. Quantification of KoRV transcripts revealed that KoRV-D expression mirrored the total KoRV expression levels (106 copies/ml of plasma), with KoRV-A and KoRV-F expression being ∼10-fold less and KoRV-B expression being ∼100-fold less, when detected. Strikingly, there was significantly higher expression of KoRV-D in healthy koalas than in koalas that developed chlamydial cystitis, with healthy koalas expressing a major KoRV-D/minor KoRV-A profile, whereas koalas that developed cystitis had variable KoRV expression profiles. Total anti-KoRV IgG antibody levels were found not to correlate with the expression of total KoRV or any individual KoRV subtype. Finally, KoRV expression was consistent between systemic and mucosal body sites and during antibiotic treatment. Collectively, this gives a comprehensive picture of KoRV dynamics during several important koala health states.IMPORTANCE The long-term survival of the koala is under serious threat, with this iconic marsupial being declared "vulnerable" by the Australian Government and officially listed as a threatened species. KoRV is clearly contributing to the overall health status of koalas, and research into this virus has been lacking detailed study of the multiple subtypes at both the proviral and expressed viral levels over time. By designing new subtype-specific assays and following well-defined koala cohorts over time, this study has generated a new more complete picture of KoRV and its relationship to koala health outcomes in the wild. Only by building a comprehensive picture of KoRV during both koala health and disease can we bring meaningful koala health interventions into better focus.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/virología , Retroviridae/genética , Animales , Australia , Evolución Biológica , Evolución Molecular , Femenino , Regulación Viral de la Expresión Génica/genética , Marsupiales/virología , Phascolarctidae/metabolismo , Provirus/genética , Retroviridae/metabolismo , Infecciones por Retroviridae/virología
13.
Virol J ; 17(1): 168, 2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33129323

RESUMEN

Koala retrovirus (KoRV) is believed to be in an active state of endogenization into the koala genome. KoRV is present as both an endogenous and exogenous infection in all koalas in northern Australia. KoRV has been linked to koala pathologies including neoplasia and increased susceptibility to Chlamydia. A KoRV vaccine recently trialled in 10 northern koalas improved antibody response and reduced viral load. This communication reports the expression of key immune genes underlining the innate and adaptive immune response to vaccination in these northern koalas. The results showed that prior to vaccination, IL-8 was expressed at the highest levels, with at least 200-fold greater expression compared to other cytokines, while CD8 mRNA expression was significantly higher than CD4 mRNA expression level. Interferon-γ was up-regulated at both 4- and 8-weeks post-vaccination while IL-8 was down-regulated at 8-weeks post-vaccination.


Asunto(s)
Citocinas/genética , Interferón gamma/genética , Phascolarctidae/virología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/veterinaria , Retroviridae/inmunología , Vacunas Virales/inmunología , Animales , Formación de Anticuerpos , Australia , Estudios de Cohortes , Citocinas/inmunología , Retrovirus Endógenos/genética , Retrovirus Endógenos/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Phascolarctidae/inmunología , Retroviridae/genética , Infecciones por Retroviridae/prevención & control , Regulación hacia Arriba , Vacunas Virales/administración & dosificación
14.
Arch Virol ; 165(11): 2409-2417, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32770481

RESUMEN

Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.


Asunto(s)
Gammaretrovirus/clasificación , Transmisión Vertical de Enfermedad Infecciosa , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Secuencia de Aminoácidos , Animales , Australia/epidemiología , Infecciones por Chlamydia/veterinaria , Infecciones por Chlamydia/virología , Evolución Molecular , Neoplasias/veterinaria , Neoplasias/virología , Phascolarctidae/inmunología , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión
15.
J Gen Virol ; 100(9): 1328-1339, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31329088

RESUMEN

Koala retrovirus (KoRV) is a recently endogenized retrovirus associated with neoplasia and immunosuppression in koala populations. The virus is known to display sequence variability and to be present at varying prevalence in different populations, with animals in southern Australia displaying lower prevalence and viral loads than northern animals. This study used a PCR and next-generation sequencing strategy to examine the diversity of the KoRV env gene in both proviral DNA and viral RNA forms in two distinct populations representative of the 'northern' and 'southern' koala genotypes. The current study demonstrated that the full range of KoRV subtypes is present across both populations, and in both healthy and sick animals. KoRV-A was the predominant proviral subtype in both populations, but there was marked diversity of DNA and RNA subtypes within individuals. Many of the northern animals displayed a higher RNA viral diversity than evident in their proviral DNA, indicating relatively higher replication efficiency of non-KoRV-A subtypes. The southern animals displayed a lower absolute copy number of KoRV than the northern animals as reported previously and a higher preponderance of KoRV-A in individual animals. These discrepancies in viral replication and diversity remain unexplained but may indicate relative protection of the southern population from KoRV replication due to either viral or host factors and may represent an important protective effect for the host in KoRV's ongoing entry into the koala genome.


Asunto(s)
Productos del Gen env/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Retroviridae/genética , Envejecimiento , Animales , Australia/epidemiología , Femenino , Regulación Viral de la Expresión Génica/fisiología , Masculino , Infecciones por Retroviridae/virología
16.
J Clin Microbiol ; 57(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626662

RESUMEN

The iconic koala (Phascolarctos cinereus) is host to two divergent gammaherpesviruses, phascolarctid gammaherpesviruses 1 and 2 (PhaHV-1 and -2), but the clinical significance of the individual viruses is unknown and current diagnostic methods are unsuitable for differentiating between the viruses in large-scale studies. To address this, we modified a pan-herpesvirus nested PCR to incorporate high-resolution melt analysis. We applied this assay in a molecular epidemiological study of 810 koalas from disparate populations across Victoria, Australia, including isolated island populations. Animal and clinical data recorded at sampling were analyzed and compared to infection status. Between populations, the prevalence of PhaHV-1 and -2 varied significantly, ranging from 1% to 55%. Adult and older animals were 5 to 13 times more likely to be positive for PhaHV-1 than juveniles (P < 0.001), whereas PhaHV-2 detection did not change with age, suggesting differences in how these two viruses are acquired over the life of the animal. PhaHV-1 detection was uniquely associated with the detection of koala retrovirus, particularly in females (P = 0.008). Both viruses were significantly associated (P < 0.05) with the presence of genital tract abnormalities (uterine/ovarian cysts and testicular malformation), reduced fertility in females, urinary incontinence, and detection of Chlamydia pecorum, although the strength of these associations varied by sex and virus. Understanding the clinical significance of these viruses and how they interact with other pathogens will inform future management of threatened koala populations.


Asunto(s)
Gammaherpesvirinae/genética , Infecciones por Herpesviridae/veterinaria , Técnicas de Diagnóstico Molecular/veterinaria , Phascolarctidae/virología , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Animales Salvajes , Australia/epidemiología , Femenino , Gammaherpesvirinae/aislamiento & purificación , Variación Genética , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Masculino , Epidemiología Molecular , Prevalencia , Factores de Riesgo
17.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237837

RESUMEN

The recent acquisition of a novel retrovirus (KoRV) by koalas (Phascolarctos cinereus) has created new opportunities for retroviral research and new challenges for koala conservation. There are currently two major subtypes of KoRV: KoRV-A, which is believed to be endogenous only in koalas from the northern part of Australia, and KoRV-B, which appears to be exogenous. Understanding and management of these subtypes require population level studies of their prevalence and diversity, especially when coinfected in the same population, and investigations of their modes of transmission in the wild. Toward this end, we studied a wild Queensland koala population of 290 animals over a 5-year period and investigated the prevalence, diversity and mode of transmission of KoRV-A and KoRV-B. We found KoRV-A to have an infection level of 100% in the population, with all animals sharing the same dominant envelope protein sequence. In contrast, the KoRV-B infection prevalence was only 24%, with 21 different envelope protein sequence variants found in the 83 KoRV-B-positive animals. Linked to severe disease outcomes, a significant association between KoRV-B positivity and both chlamydial disease and neoplasia was found in the population. Transmission of KoRV-B was found at a rate of 3% via adult-to-adult contact per year, while there was a 100% rate of KoRV-B-positive mothers transmitting the virus to their joeys. Collectively, these findings demonstrate KoRV-B as the pathogenic subtype in this wild koala population and inform future intervention strategies with subtype variation and transmission data. IMPORTANCE KoRV represents a unique opportunity to study a relatively young retrovirus as it goes through its molecular evolution in both an endogenous form and a more recently evolved exogenous form. The endogenous form, KoRV-A, now appears to have stably and completely established itself in Northern Australian koala populations and is progressing south. Conversely, the exogenous form, KoRV-B, is undergoing continuous mutation and spread in the north and, as yet, has not reached all southern koala populations. We can now link KoRV-B to neoplasia and chlamydial disease in both wild and captive koalas, making it an imminent threat to this already vulnerable species. This work represents the largest study of koalas in a wild population with respect to KoRV-A/KoRV-B-infected/coinfected animals and the linkage of this infection to chlamydial disease, neoplasia, viral evolution, and spread.


Asunto(s)
Infecciones por Chlamydia/epidemiología , Gammaretrovirus/clasificación , Productos del Gen env/genética , Transmisión Vertical de Enfermedad Infecciosa , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/veterinaria , Secuencia de Aminoácidos , Animales , Australia/epidemiología , Evolución Molecular , Femenino , Gammaretrovirus/genética , Masculino , Neoplasias/veterinaria , Neoplasias/virología , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología
18.
Arch Virol ; 164(3): 757-765, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30656465

RESUMEN

Koala retrovirus (KoRV) is a gammaretrovirus that is becoming endogenous in koalas. Here, we explored the dynamics of KoRV infection in captive koalas in Japan. We isolated peripheral blood mononuclear cells (PBMCs) from 11 koalas, from which we extracted the KoRV genome. We found the prevalence of KoRV provirus in the koalas to be 100%, and the copy number of KoRV proviral DNA in genomic DNA isolated from PBMCs was variable. The KoRV envelope genes from 11 koalas were sequenced and all were found to be KoRV type A. Nucleotide substitution analysis revealed differences in the KoRV env gene sequences of parents and their offspring. Although no viral KoRV RNA was detected in plasma of healthy koalas, a high copy number was found in plasma of a diseased koala (#6). Hematological analysis showed a high white blood cell (WBC) count in the blood of koala #6. Notably, when retested ~ 5 months later, koala #6 was found to be negative for KoRV in plasma, and the WBC count was within the normal range. Therefore, KoRV in the plasma could be a possible indicator of koala health. We also investigated KoRV growth in concanavalin-A-stimulated koala PBMCs by measuring the KoRV provirus copy number in gDNA and the KoRV RNA copy number in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-culture. We also observed that KoRV isolates were able to infect HEK293T cells. These findings could enhance our understanding of the dynamics of KoRV and its pathogenesis in koalas.


Asunto(s)
Gammaretrovirus/genética , Gammaretrovirus/aislamiento & purificación , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Animales , Femenino , Gammaretrovirus/clasificación , Células HEK293 , Humanos , Japón , Leucocitos Mononucleares/virología , Masculino , ARN Viral/genética , Infecciones por Retroviridae/virología
19.
Arch Virol ; 164(11): 2735-2745, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31486907

RESUMEN

Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.


Asunto(s)
Retrovirus Endógenos/genética , Gammaretrovirus/patogenicidad , Phascolarctidae/virología , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/veterinaria , Animales , Animales de Zoológico/virología , Línea Celular , Coinfección/veterinaria , Coinfección/virología , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/aislamiento & purificación , Femenino , Gammaretrovirus/clasificación , Gammaretrovirus/genética , Gammaretrovirus/aislamiento & purificación , Japón/epidemiología , Masculino , Provirus/genética , Infecciones por Retroviridae/virología , Tupaia/virología , Carga Viral
20.
Virus Genes ; 55(3): 421-424, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30877415

RESUMEN

A novel gamma-retroviral sequence (7912 bp), inclusive of both partial 5' and 3' long terminal repeat regions, was identified from the brain of a black flying-fox (Pteropus alecto), Queensland, Australia. The sequence was distinct from other retroviral sequences identified in bats and showed greater identity to Koala, Gibbon ape leukaemia, Melomys burtoni and Woolly monkey retroviruses, forming their own phylogenetic clade. This finding suggests that these retroviruses may have an unknown common ancestor and that further investigation into the diversity of gamma-retroviruses in Australian Pteropus species may elucidate their evolutionary origins.


Asunto(s)
Quirópteros/virología , Hylobates/virología , Phascolarctidae/virología , Retroviridae/genética , Animales , Australia , Quirópteros/genética , Hylobates/genética , Virus de la Leucemia del Gibón/genética , Phascolarctidae/genética , Filogenia , Virus del Sarcoma del Mono Lanudo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA