Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.966
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38677291

RESUMEN

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Asunto(s)
Antígeno B7-1 , Folículo Piloso , Inflamación , Piel , Células Madre , Linfocitos T Reguladores , Cicatrización de Heridas , Animales , Linfocitos T Reguladores/inmunología , Ratones , Cicatrización de Heridas/inmunología , Piel/inmunología , Piel/lesiones , Piel/patología , Células Madre/inmunología , Células Madre/metabolismo , Inflamación/inmunología , Folículo Piloso/inmunología , Antígeno B7-1/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Repitelización/inmunología , Movimiento Celular/inmunología , Proliferación Celular
2.
Immunity ; 53(2): 371-383.e5, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32673566

RESUMEN

Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses. Il31-/- mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-ß1, which promotes wound healing, to dermal DCs in vitro was sufficient to induce Il31 expression, and Tgfbr1f/f CD11c-Cre mice exhibited reduced scratching and decreased Il31 expression in wounds in vivo. Thus, cDC2s promote itching during skin would healing via a TGF-ß-IL-31 axis with implications for treatment of wound itching.


Asunto(s)
Interleucinas/metabolismo , Células de Langerhans/fisiología , Prurito/patología , Células Receptoras Sensoriales/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Femenino , Humanos , Interleucinas/genética , Células de Langerhans/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptores de Interleucina/metabolismo , Piel/citología , Piel/crecimiento & desarrollo , Piel/lesiones , Canales Catiónicos TRPV/metabolismo , Cicatrización de Heridas/fisiología
3.
Nature ; 619(7968): 167-175, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344586

RESUMEN

Healthy skin is a mosaic of wild-type and mutant clones1,2. Although injury can cooperate with mutated Ras family proteins to promote tumorigenesis3-12, the consequences in genetically mosaic skin are unknown. Here we show that after injury, wild-type cells suppress aberrant growth induced by oncogenic Ras. HrasG12V/+ and KrasG12D/+ cells outcompete wild-type cells in uninjured, mosaic tissue but their expansion is prevented after injury owing to an increase in the fraction of proliferating wild-type cells. Mechanistically, we show that, unlike HrasG12V/+ cells, wild-type cells respond to autocrine and paracrine secretion of EGFR ligands, and this differential activation of the EGFR pathway explains the competitive switch during injury repair. Inhibition of EGFR signalling via drug or genetic approaches diminishes the proportion of dividing wild-type cells after injury, leading to the expansion of HrasG12V/+ cells. Increased proliferation of wild-type cells via constitutive loss of the cell cycle inhibitor p21 counteracts the expansion of HrasG12V/+ cells even in the absence of injury. Thus, injury has a role in switching the competitive balance between oncogenic and wild-type cells in genetically mosaic skin.


Asunto(s)
Proliferación Celular , Genes ras , Mosaicismo , Mutación , Piel , Proteínas ras , Ciclo Celular , Proliferación Celular/genética , Receptores ErbB/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Piel/citología , Piel/lesiones , Piel/metabolismo , Piel/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
4.
Nature ; 623(7988): 792-802, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968392

RESUMEN

Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.


Asunto(s)
Receptor de Proteína C Endotelial , Fascia , Cicatrización de Heridas , Animales , Ratones , Diferenciación Celular , Hipoxia de la Célula , Linaje de la Célula , Modelos Animales de Enfermedad , Receptor de Proteína C Endotelial/metabolismo , Fascia/citología , Fascia/lesiones , Fascia/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Inflamación/metabolismo , Inflamación/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Transducción de Señal , Análisis de Expresión Génica de una Sola Célula , Piel/citología , Piel/lesiones , Piel/metabolismo , Tretinoina/metabolismo
5.
Immunity ; 50(5): 1262-1275.e4, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027995

RESUMEN

Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.


Asunto(s)
Dermatitis Atópica/inmunología , Hipersensibilidad a los Alimentos/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Mastocitos/inmunología , Adolescente , Anafilaxia/inmunología , Animales , Proliferación Celular , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina E/inmunología , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Piel/inmunología , Piel/lesiones
6.
Proc Natl Acad Sci U S A ; 120(28): e2305085120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399395

RESUMEN

Chronic cutaneous wounds remain a persistent unmet medical need that decreases life expectancy and quality of life. Here, we report that topical application of PY-60, a small-molecule activator of the transcriptional coactivator Yes-associated protein (YAP), promotes regenerative repair of cutaneous wounds in pig and human models. Pharmacological YAP activation enacts a reversible pro-proliferative transcriptional program in keratinocytes and dermal cells that results in accelerated re-epithelization and regranulation of the wound bed. These results demonstrate that transient topical administration of a YAP activating agent may represent a generalizable therapeutic approach to treating cutaneous wounds.


Asunto(s)
Calidad de Vida , Cicatrización de Heridas , Humanos , Animales , Porcinos , Cicatrización de Heridas/fisiología , Piel/lesiones , Queratinocitos/metabolismo , Administración Cutánea
7.
Am J Physiol Cell Physiol ; 327(1): C193-C204, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682240

RESUMEN

Negative pressure wound therapy (NPWT) is extensively used in clinical settings to enhance the healing of wounds. Despite its widespread use, the molecular mechanisms driving the efficacy of NPWT have not been fully elucidated. In this study, skin wound-healing models were established, with administration of NPWT. Vimentin, collagen I, and MMP9 of skin tissues were detected by immunofluorescence (IF). Gene expression analysis of skin wound tissues was performed by RNA-sequencing (RNA-seq). Protein expression was assayed by a Western blotting or IF assay, and mRNA levels were quantified by quantitative PCR. Chromatin accessibility profiles of fibroblasts following NPWT or IL-17 exposure were analyzed by ATAC-seq. In rat wound-healing models, NPWT promoted wound repair by promoting reepithelialization, extracellular matrix (ECM) synthesis, and proliferation, which mainly occurred in the early stage of wound healing. These differentially expressed genes (DEGs) in NPWT wounds versus control wounds were enriched in the IL-17 signaling pathway. IL-17 was identified as an upregulated factor following NPWT in skin wounds. Moreover, the IL-17 inhibitor secukinumab (SEC) could abolish the promoting effect of NPWT on wound healing. Importantly, chromatin accessibility profiles were altered following NPWT and IL-17 stimulation in skin fibroblasts. Our findings suggest that NPWT upregulates IL-17 to promote wound healing by altering chromatin accessibility, which is a novel mechanism for NPWT's efficacy in wound healing.NEW & NOTEWORTHY To our knowledge, this is the first report of the efficacy of negative pressure wound therapy (NPWT) in promoting wound healing via IL-17. Moreover, NPWT and IL-17 can alter chromatin accessibility. Our study identifies a novel mechanism for NPWT's efficacy in wound healing.


Asunto(s)
Cromatina , Interleucina-17 , Terapia de Presión Negativa para Heridas , Ratas Sprague-Dawley , Cicatrización de Heridas , Animales , Interleucina-17/metabolismo , Interleucina-17/genética , Terapia de Presión Negativa para Heridas/métodos , Cicatrización de Heridas/efectos de los fármacos , Ratas , Cromatina/metabolismo , Cromatina/genética , Masculino , Piel/lesiones , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Transducción de Señal
8.
Dev Biol ; 498: 14-25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963624

RESUMEN

Axolotls have been considered to be able to regenerate their skin completely. Our recent study updated this theory with the finding that the lattice structure of dermal collagen fibers was not fully regenerated after skin injury. We also discovered that nerves induce the regeneration of collagen fibers. The mechanism of collagen fiber regeneration remains unknown, however. In this study, we focused on the structure of collagen fibers with collagen braiding cells, and cell origin in axolotl skin regeneration. In the wounded dermis, cells involved in skin repair/regeneration were derived from both the surrounding dermis and the subcutaneous tissue. Regardless of cell origin, cells acquired the proper cell morphology to braid collagen fiber with nerve presence. We also found that FGF signaling could substitute for the nerve roles in the conversion of subcutaneous fibroblasts to lattice-shaped dermal fibroblasts. Our findings contribute to the elucidation of the fundamental mechanisms of true skin regeneration and provide useful insights for pioneering new skin treatments.


Asunto(s)
Ambystoma mexicanum , Cicatrización de Heridas , Animales , Ambystoma mexicanum/fisiología , Cicatrización de Heridas/fisiología , Piel/lesiones , Colágeno , Matriz Extracelular , Fibroblastos
9.
J Cell Biochem ; 125(2): e30513, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38229522

RESUMEN

Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.


Asunto(s)
Piel , Cicatrización de Heridas , Ratones , Masculino , Animales , Cicatrización de Heridas/genética , Bromodesoxiuridina , Piel/lesiones , Epidermis , Colágeno , Proteínas Circadianas Period/genética
10.
Small ; 20(3): e2305100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688343

RESUMEN

Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.


Asunto(s)
Diabetes Mellitus , Nanocompuestos , Nanofibras , Humanos , Cicatrización de Heridas , Piel/lesiones , Nanocompuestos/química , Nanofibras/química , Inflamación
11.
Small ; 20(25): e2309276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247194

RESUMEN

Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.


Asunto(s)
Complicaciones de la Diabetes , Exosomas , Hidrogeles , Células Madre Mesenquimatosas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Exosomas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/patología , Piel/efectos de los fármacos , Piel/lesiones , Humanos , Supervivencia Celular/efectos de los fármacos , Bacterias/efectos de los fármacos
12.
Immunity ; 43(4): 803-16, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26474656

RESUMEN

Activation of the immune response during injury is a critical early event that determines whether the outcome of tissue restoration is regeneration or replacement of the damaged tissue with a scar. The mechanisms by which immune signals control these fundamentally different regenerative pathways are largely unknown. We have demonstrated that, during skin repair in mice, interleukin-4 receptor α (IL-4Rα)-dependent macrophage activation controlled collagen fibril assembly and that this process was important for effective repair while having adverse pro-fibrotic effects. We identified Relm-α as one important player in the pathway from IL-4Rα signaling in macrophages to the induction of lysyl hydroxylase 2 (LH2), an enzyme that directs persistent pro-fibrotic collagen cross-links, in fibroblasts. Notably, Relm-ß induced LH2 in human fibroblasts, and expression of both factors was increased in lipodermatosclerosis, a condition of excessive human skin fibrosis. Collectively, our findings provide mechanistic insights into the link between type 2 immunity and initiation of pro-fibrotic pathways.


Asunto(s)
Cicatriz/etiología , Colágeno/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Macrófagos/metabolismo , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología , Animales , Cicatriz/metabolismo , Cicatriz/patología , Técnicas de Cocultivo , Dermatitis/metabolismo , Dermatitis/patología , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Interleucinas/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/biosíntesis , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Receptores de Superficie Celular/deficiencia , Esclerodermia Localizada/metabolismo , Esclerodermia Localizada/patología , Piel/lesiones , Piel/metabolismo , Piel/patología
13.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602068

RESUMEN

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Traumatismos por Radiación , Piel , Humanos , Bioimpresión/métodos , Traumatismos por Radiación/terapia , Piel/efectos de la radiación , Piel/lesiones , Piel/patología , Cicatrización de Heridas , Ingeniería de Tejidos/métodos
14.
Wound Repair Regen ; 32(3): 257-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38111086

RESUMEN

A wide variety of biomaterials has been developed to assist in wound healing, including acellular animal and human-derived protein matrices. However, millions of patients worldwide still suffer from non-healing chronic wounds, demonstrating a need for further innovation in wound care. To address this need, a novel biomaterial, the human keratin matrix (HKM), was developed, characterised, and tested in vitro and in vivo. HKM was found to be degradation-resistant, and a proteomics analysis showed it to be greater than 99% human keratin proteins. PCR revealed adult human epidermal keratinocytes (HEKa) grown in contact with HKM showed increased gene expression of keratinocyte activations markers such as Epidermal Growth Factor (EGF). Additionally, a cytokine microarray demonstrated culture on HKM increased the release of cytokines involved in wound inflammatory modulation by both HEKa cells and adult human dermal fibroblasts (HDFa). Finally, in a murine chronic wound model, full-thickness wounds treated weekly with HKM were smaller through the healing process than those treated with human amniotic membrane (AM), bovine dermis (BD), or porcine decellularized small intestinal submucosa (SIS). HKM-treated wounds also closed significantly faster than AM- and SIS-treated wounds. These data suggest that HKM is an effective novel treatment for chronic wounds.


Asunto(s)
Citocinas , Péptidos y Proteínas de Señalización Intercelular , Queratinocitos , Queratinas , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Humanos , Animales , Ratones , Queratinocitos/metabolismo , Citocinas/metabolismo , Queratinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Materiales Biocompatibles/farmacología , Piel/lesiones , Piel/metabolismo , Modelos Animales de Enfermedad , Heridas y Lesiones/metabolismo , Heridas y Lesiones/terapia
15.
Wound Repair Regen ; 32(4): 393-406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494792

RESUMEN

Skin injuries can have unexpected surfaces, leading to uneven wound surfaces and inadequate dressing contact with these irregular surfaces. This can decrease the dressing's haemostatic action and increase the healing period. This study recommends the use of sticky and flexible cryogel coverings to promote faster haemostasis and efficiently handle uneven skin wounds. Alginate cryogels have a fast haemostatic effect and shape flexibility due to their macroporous structure. The material demonstrates potent antibacterial characteristics and enhances skin adherence by adding grafted chitosan with gallic acid. In irregular defect wound models, cryogels can cling closely to uneven damage surfaces due to their amorphous nature. Furthermore, their macroporous structure allows for quick haemostasis by quickly absorbing blood and wound exudate. After giving the dressing a thorough rinse, its adhesive strength reduces and it is simple to remove without causing any damage to the wound. Cryogel demonstrated faster haemostasis than gauze in a wound model on a rat tail, indicating that it has considerable potential for use as a wound dressing in the biomedical area.


Asunto(s)
Vendajes , Criogeles , Hemostasis , Cicatrización de Heridas , Criogeles/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratas , Hemostasis/efectos de los fármacos , Polisacáridos/farmacología , Quitosano/farmacología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Alginatos/farmacología , Masculino , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/terapia , Hemostáticos/farmacología , Piel/lesiones
16.
Wound Repair Regen ; 32(4): 475-486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572659

RESUMEN

Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2ß1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin ß1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds.


Asunto(s)
Colágeno , Fibroblastos , Queratinocitos , Repitelización , Transducción de Señal , Cicatrización de Heridas , Animales , Humanos , Porcinos , Colágeno/metabolismo , Colágeno/farmacología , Queratinocitos/metabolismo , Repitelización/efectos de los fármacos , Fibroblastos/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Integrina alfa2beta1/metabolismo , Proliferación Celular , Células Cultivadas , Movimiento Celular , Piel/lesiones , Piel/metabolismo , Péptidos/farmacología
17.
Int J Legal Med ; 138(4): 1357-1368, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570340

RESUMEN

Gunshot wound analysis is an important part of medicolegal practice, in both autopsies and examinations of living persons. Well-established and studied simulants exist that exhibit both physical and biomechanical properties of soft-tissues and bones. Current research literature on ballistic wounds focuses on the biomechanical properties of skin simulants. In our extensive experimental study, we tested numerous synthetic and natural materials, regarding their macromorphological bullet impact characteristics, and compared these data with those from real bullet injuries gathered from medicolegal practice. Over thirty varieties of potential skin simulants were shot perpendicularly, and at 45°, at a distance of 10 m and 0.3 m, using full metal jacket (FMJ) projectiles (9 × 19 mm Luger). Simulants included ballistic gelatine at various concentrations, dental silicones with several degrees of hardness, alginates, latex, chamois leather, suture trainers for medical training purposes and various material compound models. In addition to complying to the general requirements for a synthetic simulant, results obtained from dental silicones shore hardness 70 (backed with 20 % by mass gelatine), were especially highly comparable to gunshot entry wounds in skin from real cases. Based on these results, particularly focusing on the macroscopically detectable criteria, we can strongly recommend dental silicone shore hardness 70 as a skin simulant for wound ballistics examinations.


Asunto(s)
Balística Forense , Gelatina , Piel , Heridas por Arma de Fuego , Heridas por Arma de Fuego/patología , Balística Forense/métodos , Humanos , Piel/lesiones , Piel/patología , Látex , Siliconas , Modelos Biológicos , Dureza
18.
Int J Legal Med ; 138(4): 1351-1356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520552

RESUMEN

Immunohistochemical analysis of platelet-derived growth factor receptor-α (PDGFR-α) was performed on human skin wounds obtained from forensic autopsy cases. Thirty human skin wounds were collected at different post-infliction intervals as follows: Group I, 4 h to 3 days (n = 16); Group II, 4 to 7 days (n = 7); Group III, 9 to 10 days (n = 3); and Group IV, 14 to 20 days (n = 4). Immunopositive reactions for PDGFR-α were not observed in the uninjured human skin specimens. In a semi-quantitative morphometrical analysis, the number of PDGFR-α-positive cells was observed increased in Group II, with the average number of PDGFR-α-positive cells being the highest in Group II. Additionally, in Group II, all specimens showed PDGFR-α-positive cells, with an average number of > 200 cells in five fields of view, suggesting a wound age of 4 to 7 days. Taken together, the immunohistochemical detection of PDGFR-α in human skin wounds can be a useful tool for wound age determination.


Asunto(s)
Inmunohistoquímica , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Piel , Humanos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Piel/lesiones , Piel/patología , Piel/metabolismo , Piel/química , Masculino , Femenino , Persona de Mediana Edad , Adulto , Patologia Forense , Factores de Tiempo , Anciano , Anciano de 80 o más Años
19.
Int J Hyperthermia ; 41(1): 2354435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754976

RESUMEN

INTRODUCTION: Psoriasis is characterized by an increase in the proliferation of keratinocytes and nerve fiber activity, contributing to the typical skin lesions. Pulsed Dye Laser (PDL) treatment is effective for the treatment of psoriatic lesions but its mechanism remains unclear. One hypothesis is that PDL causes thermal damage by the diffusion of heat to neighboring structures in lesional skin. There is limited information on the thermal sensitivity of these neighboring skin cells when exposed to hyperthermia for durations lasting less than a minute. Our study aimed to investigate the cell-specific responses to heat using sub-minute exposure times and moderate to ablative hyperthermia. MATERIALS AND METHODS: Cultured human endothelial cells, smooth muscle cells, neuronal cells, and keratinocytes were exposed to various time (2-20 sec) and temperature (45-70 °C) combinations. Cell viability was assessed by measuring intracellular ATP content 24 h after thermal exposure and this data was used to calculate fit parameters for the Arrhenius model and CEM43 calculations. RESULTS: Our results show significant differences in cell survival between cell types (p < 0.0001). Especially within the range of 50-60 °C, survival of neuronal cells and keratinocytes was significantly less than that of endothelial and smooth muscle cells. No statistically significant difference was found in the lethal dose (LT50) of thermal energy between neuronal cells and keratinocytes. However, CEM43 calculations showed significant differences between all four cell types. CONCLUSION: The results imply that there is a cell-type-dependent sensitivity to thermal damage which suggests that neuronal cells and keratinocytes are particularly susceptible to diffusing heat from laser treatment. Damage to these cells may aid in modulating the neuro-inflammatory pathways in psoriasis. These data provide insight into the potential mechanisms of PDL therapy for psoriasis and advance our understanding of how thermal effects may play a role in its effectiveness.


Asunto(s)
Queratinocitos , Piel , Humanos , Piel/patología , Piel/efectos de la radiación , Piel/lesiones , Supervivencia Celular/efectos de la radiación
20.
Int J Med Sci ; 21(8): 1529-1540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903926

RESUMEN

Introduction: Skin, being the body's largest organ, is susceptible to injuries. Despite the adoption of common treatments such as debridement, wound dressing, and infection control measures for skin injuries, the outcomes remain unsatisfactory, especially in diabetic patients or elderly patients. The use of adipose stem cell-derived apoptotic extracellular vesicles (apoEVs-ASCs) has been shown great therapeutic potential in wound repair. The effect of the donor age on the biological properties and functions of apoEVs-ASCs has not been reported. Methods: In this study, we isolated apoEVs-ASCs from young and aged rats. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied for the characteristics of apoEVs-ASCs. For aged and young apoEVs-ASCs groups, the proliferative and migration abilities in vitro, and wound healing function in vivo were contrastively evaluated and quantified for statistical analysis. Results: Our results showed that both young and aged apoEVs-ASCs induced skin healing and reduced scar formation. In addition, young apoEVs-ASCs had significantly higher proliferation, migration of fibroblasts and endothelial cells, and increased neo-angiogenesis ability, when compared with that of aged apoEVs-ASCs. Conclusion: Young apoEVs-ASCs should be employed for wound repair, which is associated with its superior promoting effect on wound healing.


Asunto(s)
Apoptosis , Proliferación Celular , Vesículas Extracelulares , Piel , Cicatrización de Heridas , Animales , Cicatrización de Heridas/fisiología , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/metabolismo , Ratas , Piel/lesiones , Piel/patología , Tejido Adiposo/citología , Células Madre/citología , Células Madre/metabolismo , Humanos , Masculino , Movimiento Celular , Factores de Edad , Regeneración/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA