Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.136
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 615(7951): 251-258, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890370

RESUMEN

Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined1. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed2-4. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters5,6; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively. Here, we extracted the chemical characteristics and sequential arrangement along a protein chain at the segmental level from natural protein libraries and used the information to design heteropolymer ensembles as mixtures of disordered, partially folded and folded proteins. For each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids including assisting protein folding during translation, preserving the viability of fetal bovine serum without refrigeration, enhancing the thermal stability of proteins and behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability. This framework provides valuable guiding principles to synthetically realize protein properties, engineer bio/abiotic hybrid materials and, ultimately, realize matter-to-life transformations.


Asunto(s)
Materiales Biomiméticos , Biomimética , Polímeros , Conformación Proteica , Pliegue de Proteína , Proteínas , Secuencia de Aminoácidos , Polímeros/síntesis química , Polímeros/química , Proteínas/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Líquidos Corporales/química , Citosol/química , Albúmina Sérica Bovina/química , Biología Sintética
2.
Nature ; 610(7932): 502-506, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171292

RESUMEN

In the realm of particle self-assembly, it is possible to reliably construct nearly arbitrary structures if all the pieces are distinct1-3, but systems with fewer flavours of building blocks have so far been limited to the assembly of exotic crystals4-6. Here we introduce a minimal model system of colloidal droplet chains7, with programmable DNA interactions that guide their downhill folding into specific geometries. Droplets are observed in real space and time, unravelling the rules of folding. Combining experiments, simulations and theory, we show that controlling the order in which interactions are switched on directs folding into unique structures, which we call colloidal foldamers8. The simplest alternating sequences (ABAB...) of up to 13 droplets yield 11 foldamers in two dimensions and one in three dimensions. Optimizing the droplet sequence and adding an extra flavour uniquely encodes more than half of the 619 possible two-dimensional geometries. Foldamers consisting of at least 13 droplets exhibit open structures with holes, offering porous design. Numerical simulations show that foldamers can further interact to make complex supracolloidal architectures, such as dimers, ribbons and mosaics. Our results are independent of the dynamics and therefore apply to polymeric materials with hierarchical interactions on all length scales, from organic molecules all the way to Rubik's Snakes. This toolbox enables the encoding of large-scale design into sequences of short polymers, placing folding at the forefront of materials self-assembly.


Asunto(s)
Ciencia de los Materiales , Polímeros , ADN/química , Emulsiones/síntesis química , Emulsiones/química , Polímeros/síntesis química , Polímeros/química , Ciencia de los Materiales/métodos , Coloides/síntesis química , Coloides/química
3.
Chem Soc Rev ; 53(12): 6511-6567, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38775004

RESUMEN

Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.


Asunto(s)
Portadores de Fármacos , Polimerizacion , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Portadores de Fármacos/química , Humanos , Polímeros/química , Polímeros/síntesis química , Nanopartículas/química , Liberación de Fármacos , Radicales Libres/química
4.
J Am Chem Soc ; 146(18): 12577-12586, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683934

RESUMEN

Dynamic supramolecular assemblies, driven by noncovalent interactions, pervade the biological realm. In the synthetic domain, their counterparts, supramolecular polymers, endowed with remarkable self-repair and adaptive traits, are often realized through bioinspired designs. Recently, controlled supramolecular polymerization strategies have emerged, drawing inspiration from protein self-assembly. A burgeoning area of research involves mimicking the liquid-liquid phase separation (LLPS) observed in proteins to create coacervate droplets and recognizing their significance in cellular organization and diverse functions. Herein, we introduce a novel perspective on synthetic coacervates, extending beyond their established role in synthetic biology as dynamic, membraneless phases to enable structural control in synthetic supramolecular polymers. Drawing parallels with the cooperative growth of amyloid fibrils through LLPS, we present metastable coacervate droplets as dormant monomer phases for controlled supramolecular polymerization. This is achieved via a π-conjugated monomer design that combines structural characteristics for both coacervation through its terminal ionic groups and one-dimensional growth via a π-conjugated core. This design leads to a unique temporal LLPS, resulting in a metastable coacervate phase, which subsequently undergoes one-dimensional growth via nucleation within the droplets. In-depth spectroscopic and microscopic characterization provides insights into the temporal evolution of disordered and ordered phases. Furthermore, to modulate the kinetics of liquid-to-solid transformation and to achieve precise control over the structural characteristics of the resulting supramolecular polymers, we invoke seeding in the droplets, showcasing living growth characteristics. Our work thus opens up new avenues in the exciting field of supramolecular polymerization, offering general design principles and controlled synthesis of precision self-assembled structures in confined environments.


Asunto(s)
Polimerizacion , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Polímeros/química , Polímeros/síntesis química , Extracción Líquido-Líquido/métodos , Estructura Molecular , Separación de Fases
5.
J Am Chem Soc ; 146(35): 24330-24347, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163519

RESUMEN

Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.


Asunto(s)
Aldehídos , Materiales Biocompatibles , Hidrogeles , Polímeros , Hidrogeles/química , Hidrogeles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ligandos , Aldehídos/química , Polímeros/química , Polímeros/síntesis química , Humanos
6.
J Am Chem Soc ; 146(20): 13836-13845, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717976

RESUMEN

Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.


Asunto(s)
Liberación de Fármacos , Hidrogeles , Hidrogeles/química , Hidrogeles/síntesis química , Animales , Ratones , Acetales/química , Paclitaxel/química , Paclitaxel/farmacocinética , Éteres/química , Polietilenglicoles/química , Polímeros/química , Polímeros/síntesis química , Portadores de Fármacos/química
7.
Biomacromolecules ; 25(9): 6060-6071, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39172158

RESUMEN

This work aims at synthesizing tailor-made poly(vinyl alcohol-co-vinyl acetate) (PVA) amphiphilic copolymers, obtained by alcoholysis of poly(vinyl acetate) (PVAc) that could display improved properties as stabilizers compared to commercially available PVAs. Well-defined PVAs with different alcoholysis degrees were produced from a library of PVAc homopolymers synthesized by macromolecular design via interchange of xanthate polymerization and exhibiting different degrees of polymerization degrees. Subsequently, these PVAs were evaluated as stabilizers in the emulsion copolymerization of VAc and vinyl neodecanoate (VERSA 10, referred to as V10) and compared to a commercially available reference PVA obtained by alcoholysis of PVAc formed by conventional radical polymerization. In all cases, stable latexes were obtained and compared in terms of their colloidal characteristics. To identify the best stabilizer candidate, the amount of PVA remaining in water and not participating to the particle stabilization was evaluated in each case.


Asunto(s)
Emulsiones , Polimerizacion , Alcohol Polivinílico , Compuestos de Vinilo , Emulsiones/química , Compuestos de Vinilo/química , Alcohol Polivinílico/química , Polivinilos/química , Polivinilos/síntesis química , Polímeros/química , Polímeros/síntesis química
8.
Biomacromolecules ; 25(5): 3122-3130, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696355

RESUMEN

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Asunto(s)
Dextranos , Péptidos , Polimerizacion , Dextranos/química , Péptidos/química , Péptidos/síntesis química , Polímeros/química , Polímeros/síntesis química , Óxidos N-Cíclicos/química , Anhídridos/química , Polisacáridos/química , Micelas
9.
Inorg Chem ; 63(35): 16348-16361, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39155842

RESUMEN

Monitoring of intracellular pH is of great importance since deviation of this parameter from the "normal" magnitudes can be considered as an indicator of various pathologies. Thus, the development of new efficient and biocompatible sensors suitable for application in biological systems and capable of quantitative pH estimation remains an urgent chemical task. Herein, we report the synthesis of a series of phosphorescent rhenium [Re(NN)(CO)2(PR3)2]+ complexes based on the NN diimine ligands containing pH-responsive carboxylic groups and styrene-containing phosphine ligands. The complexes, which display the highest pH sensitivity, were copolymerized with polyvinylpyrrolidone using the RAFT protocol to impart water solubility and to protect the chromophores from interaction with molecular oxygen. The resulting copolymers show an emission lifetime response onto pH variations in the physiological range. Cellular experiments with Chinese hamster ovary cells (CHO-K1) reveal easy internalization of the probes in cell culture and an approximately uniform distribution in cells, with some preference for location in acidic compartments (late endosomes and lysosomes). Using nigericin to homogenize intra- and extracellular pH, we built a calibration of lifetime versus pH in live CHO-K1 cells. Analysis of the phosphorescence lifetime imaging microscopy (PLIM) data confirms the applicability of the obtained sensors for monitoring the intracellular pH in cell cultures.


Asunto(s)
Cricetulus , Polímeros , Renio , Concentración de Iones de Hidrógeno , Animales , Células CHO , Renio/química , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Estructura Molecular , Imagen Óptica
10.
Org Biomol Chem ; 22(20): 4135-4144, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712466

RESUMEN

Herein, we present an innovative synthetic approach for producing a diverse set of biobased oligomers. This method begins with olive oil and employs a wide variety of commercially available amino acids (AAs) as bio-organocatalysts, in addition to tetrabutylammonium iodide (TBAI) as a cocatalyst, to synthesize various biobased oligomers. These biobased oligomers were strategically prepared starting from epoxidized olive oil (EOO) and a variety of cyclic anhydrides (phthalic, PA; maleic, MA; succinic, SA; and glutaric, GA). Among the amino acids tested as bio-organocatalysts, L-glutamic acid (L-Glu) showed the best performance for the synthesis of both poly(EOO-co-PA) and poly(EOO-co-MA), exhibiting 100% conversion at 80 °C in 2 hours, whereas the formation of poly(EOO-co-SA) and poly(EOO-co-GA) required more extreme reaction conditions (72 hours under toluene reflux conditions). Likewise, we have succeeded in obtaining the trans isomer exclusively for the MA based-oligomer within the same synthetic framework. The obtained oligomers were extensively characterized using techniques including NMR, FT-IR, GPC and TGA. A series of computational simulations based on density functional theory (DFT) and post-Hartree Fock (post-HF) methods were performed to corroborate our experimental findings and to obtain an understanding of the reaction mechanisms.


Asunto(s)
Aminoácidos , Polimerizacion , Catálisis , Aminoácidos/química , Aminoácidos/síntesis química , Tecnología Química Verde , Aceites de Plantas/química , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/síntesis química
11.
Org Biomol Chem ; 22(24): 4958-4967, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38819437

RESUMEN

Development of biocompatible nanomaterials with mitochondria-targeting and multimodal therapeutic activities is important for cancer treatment. Herein, we designed and synthesized a multifunctional pyrrole-based nanomaterial with photothermal effects and mitochondria-targeting properties from polypyrrole and the pro-apoptotic peptide KLA. Different from traditional strategies for the preparation of PPy nanoparticles, we innovatively used the KLA peptide as the template and CuCl2 as the catalyst to trigger the oxidative polymerization of pyrrole for PPy-KLA-Cu nanoparticle formation. Besides, due to the presence of mixed-valence Cu(I)/Cu(II) states, PPy-KLA-Cu nanoparticles also exhibited multienzyme-like activities, such as peroxidase, ascorbate oxidase and glutathione peroxidase activities, which can be exploited to elevate the intracellular ROS level and simultaneously consume GSH in cancer cells. More importantly, the heat generated by PPy-KLA-Cu nanoparticles from NIR irradiation could enhance the nanozymatic activities for ROS elevation and increase the KLA-induced anticancer activity via mitochondrial dysfunction, realizing multimodal treatment of cancer cells with improved therapeutic efficacy.


Asunto(s)
Antineoplásicos , Apoptosis , Mitocondrias , Polímeros , Pirroles , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Catálisis , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Cobre/farmacología , Nanoestructuras/química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología
12.
Eur Phys J E Soft Matter ; 47(6): 37, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829453

RESUMEN

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.


Asunto(s)
Células Artificiales , Polímeros , Células Artificiales/química , Polímeros/química , Polímeros/síntesis química , Emulsiones/química , Cápsulas/química , Microfluídica/métodos , Agua/química , Técnicas Analíticas Microfluídicas , Proteínas/química
13.
Macromol Rapid Commun ; 45(13): e2400058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555523

RESUMEN

Controlled synthesis of 3D polymer networks presents a significant challenge because of the complexity of the polymerization reaction in solution. In this study, a polymerization system that facilitates the prediction of a polymer network structure via percolation simulations is realized. The most significant difference between general percolation simulations and experimental polymerization systems is the mobility of the molecules during the reaction. A crystal component-linking method that connects the precisely arranged monomer as a supramolecular crystalline state to imitate the simple percolation theory is adopted. The percolation simulation based on the crystal structure of the arranged monomers is used to accurately calculate the gelation point, gel fraction, degree of swelling, and atomic formula, which correspond with the experimental results. This suggests that the network structures polymerized via the crystal component-linking method can be predicted precisely by a simple percolation simulation. Further, the percolation simulation predicts the structures of the loop, branched polymer, and crosslinking point, which are difficult to measure experimentally. The polymerization of precisely-arranged immobilized monomers in supramolecular structures is promising in synthesizing precisely controlled polymer networks.


Asunto(s)
Polimerizacion , Polímeros , Polímeros/química , Polímeros/síntesis química , Estructura Molecular
14.
Macromol Rapid Commun ; 45(16): e2400189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748845

RESUMEN

Conjugated polymers with integrating properties of delayed fluorescence and photovoltaic responses simultaneously are scarcely reported due to the generally contradictory requirements for molecular structures to achieve the two properties. Herein, an O-B(F)←N functionalized fused unit (M) with multiple resonance features, small energy gap between lowest singlet excited state (S1) and triplet excited state (T1) (ΔEST = 0.23 eV), and delayed fluorescence (τD = 0.75 µs), is designed. Selecting three benzodithiophene (BDT) derivatives as co-units to copolymerize with M, leading to a series of O-B(F)←N embedded polymers also maintaining delayed fluorescence (τD = 0.4-0.5 µs). Moreover, p-type semiconductor characteristics are tested for these polymers with hole mobilities in the range of 10-6-10-5 cm2/Vs. Devices with obviously photovoltaic responses are prepared using these polymers as donors and Y6 as the acceptor, affording a preliminary efficiency of 5.05%. This work successfully demonstrates an effective strategy to design conjugated polymers with integrating properties of delayed fluorescence and photovoltaic performance simultaneously by introducing O-B(F)←N functional groups to polymer backbones.


Asunto(s)
Polímeros , Semiconductores , Polímeros/química , Polímeros/síntesis química , Fluorescencia , Estructura Molecular
15.
Macromol Rapid Commun ; 45(17): e2400260, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824417

RESUMEN

As the demand for sustainable polymers increases, most research efforts have focused on polyesters, which can be bioderived and biodegradable. Yet analogous polythioesters, where one of the oxygen atoms has been replaced by a sulfur atom, remain a relatively untapped source of potential. The incorporation of sulfur allows the polymer to exhibit a wide range of favorable properties, such as thermal resistance, degradability, and high refractive index. Polythioester synthesis represents a frontier in research, holding the promise of paving the way for eco-friendly alternatives to conventional polyesters. Moreover, polythioester research can also open avenues to the development of sustainable and recyclable materials. In the last 25 years, many methods to synthesize polythioesters have been developed. However, to date no industrial synthesis of polythioesters has been developed due to challenges of costs, yields, and the toxicity of the by-products. This review will summarize the recent advances in polythioester synthesis, covering step-growth polymerization, ring-opening polymerization (ROP), and biosynthesis. Crucially, the benefits and challenges of the processes will be highlighted, paying particular attention to their sustainability, with the aim of encouraging further exploration and research into the fast-growing field of polythioesters.


Asunto(s)
Ésteres , Polímeros , Ésteres/química , Polímeros/química , Polímeros/síntesis química , Polimerizacion , Estructura Molecular
16.
Macromol Rapid Commun ; 45(19): e2400317, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837466

RESUMEN

This study introduces bis(1-cyanocyclohex-1-yl)trithiocarbonate (TTC-bCCH) as a novel trithiocarbonate chain transfer agent and compares its reactivity with the previously described bis(2-cyanopropan-2-yl)trithiocarbonate (TTC-bCP) for the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St), n-butyl acrylate (nBA), and methyl methacrylate (MMA). Significant findings include the effective control of Mn and low dispersities from the onset of polymerization of St and nBA showing swift addition-fragmentation kinetics, leading to similar behaviors between the two RAFT agents. In contrast, a fourfold decrease of the chain transfer constant to MMA is established for TTC-bCCH over TTC-bCP. This trend is confirmed through density functional theory (DFT) calculations. Finally, the study compares thermoplastic elastomer properties of all-(meth)acrylic ABA block copolymers produced with both RAFT agents. The impact of dispersity of PMMA blocks on thermomechanical properties evaluated via rheological analysis reveals a more pronounced temperature dependence of the storage modulus (G') for the triblock copolymer synthesized with TTC-bCCH, indicating potential alteration of the phase separation.


Asunto(s)
Acrilatos , Polimerizacion , Acrilatos/química , Estireno/química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química , Tionas
17.
Macromol Rapid Commun ; 45(18): e2400294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39108073

RESUMEN

Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.


Asunto(s)
Politetrafluoroetileno , Politetrafluoroetileno/química , Polimerizacion , Polímeros/química , Polímeros/síntesis química , Estructura Molecular
18.
Macromol Rapid Commun ; 45(8): e2300674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234077

RESUMEN

Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.


Asunto(s)
Aniones , Polimerizacion , Poliestirenos , Poliestirenos/química , Aniones/química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química , Polivinilos/química , Polivinilos/síntesis química
19.
Macromol Rapid Commun ; 45(9): e2300644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38350089

RESUMEN

A tetra(ethylene glycol)-based 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) is synthesized in two steps including: i) the catalyst-free polyaddition of a diazide and an activated internal dialkyne and ii) the N-alkylation of the resulting 1,2,3-triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3-triazole)s are obtained via AA+BB polyaddition using copper(I)-catalyzed alkyne-azide cycloaddition or metal-free thermal alkyne-azide cycloaddition (TAAC). Poly(1,2,3-triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4-trisubstituted poly(1,2,3-triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent N-alkylation of the 1,2,3-triazole groups enables discussing the influence of the methyl group in the C-4 or C-5 position on thermal and ion conducting properties. Obtained polymers are characterized by 1H, 13C, and 19F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) exhibits a glass transition temperature of -23 °C and a direct current ionic conductivity of 2.0 × 10-6 S cm-1 at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3-triazolium cation and the properties of poly(1,2,3-triazolium)s using this additional substituent as structural handle.


Asunto(s)
Alquinos , Reacción de Cicloadición , Polímeros , Triazoles , Triazoles/química , Polímeros/química , Polímeros/síntesis química , Alquinos/química , Estructura Molecular , Catálisis , Cobre/química
20.
Macromol Rapid Commun ; 45(9): e2300652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407457

RESUMEN

Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.


Asunto(s)
Cobre , Polímeros , Pirroles , Pirroles/química , Cobre/química , Catálisis , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Reacción de Cicloadición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA