Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.325
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 21(3): e3001979, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36881558

RESUMEN

The invention of fossil fuel-derived plastics changed and reshaped society for the better; however, their mass production has created an unprecedented accumulation of waste and an environmental crisis. Scientists are searching for better ways to reduce plastic waste than the current methods of mechanical recycling and incineration, which are only partial solutions. Biological means of breaking down plastics have been investigated as alternatives, with studies mostly focusing on using microorganisms to biologically degrade sturdy plastics like polyethylene (PE). Unfortunately, after a few decades of research, biodegradation by microorganisms has not provided the hoped-for results. Recent studies suggest that insects could provide a new avenue for investigation into biotechnological tools, with the discovery of enzymes that can oxidize untreated PE. But how can insects provide a solution that could potentially make a difference? And how can biotechnology revolutionize the plastic industry to stop ongoing/increasing contamination?


Asunto(s)
Plásticos , Polietileno , Contaminación de Medicamentos
2.
Environ Microbiol ; 26(6): e16658, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843592

RESUMEN

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Polietileno , Polietileno/metabolismo , Polietileno/química , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Microbiota , Microbiología del Suelo
3.
Environ Microbiol ; 26(1): e16563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38151777

RESUMEN

Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic-colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer-specific density, hydrography and currents. Plastic-degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon-degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminación Ambiental , Polietileno , Hidrocarburos , Monitoreo del Ambiente
4.
Anal Chem ; 96(5): 2135-2141, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252409

RESUMEN

A facile route for exponential magnification of transconductance (gm) in an organic photoelectrochemical transistor (OPECT) is still lacking. Herein, photoresponsive hydrogen-bonded organic frameworks (PR-HOFs) have been shown to be efficient for gm magnification in a typical poly(ethylene dioxythiophene):poly(styrenesulfonate) OPECT. Specifically, 450 nm light stimulation of 1,3,6,8-tetrakis (p-benzoic acid) pyrene (H4TBAPy)-based HOF could efficiently modulate the device characteristics, leading to the considerable gm magnification over 78 times from 0.114 to 8.96 mS at zero Vg. In linkage with a DNA nanomachine-assisted steric hindrance amplification strategy, the system was then interfaced with the microRNA-triggered structural DNA evolution toward the sensitive detection of a model target microRNA down to 0.1 fM. This study first reveals HOFs-enabled efficient gm magnification in organic electronics and its application for sensitive biomolecular detection.


Asunto(s)
Ácido Benzoico , MicroARNs , Hidrógeno , Polietileno , ADN
5.
Appl Environ Microbiol ; 90(2): e0201623, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214515

RESUMEN

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Plásticos , Microplásticos/química , Microplásticos/farmacología , Polietileno/análisis , Polietileno/farmacología , Ecosistema , Temperatura , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Poliésteres , Metaboloma , Monitoreo del Ambiente
6.
Arch Microbiol ; 206(4): 188, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519709

RESUMEN

Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.


Asunto(s)
Bacillus , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Tereftalatos Polietilenos , Lacasa , Bacillus/metabolismo , Biodegradación Ambiental
7.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943017

RESUMEN

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Microbiota , Microplásticos , Instalaciones de Eliminación de Residuos , Microplásticos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Contaminantes Químicos del Agua/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Estuarios , Polietileno/metabolismo , Tereftalatos Polietilenos/metabolismo
8.
Fish Shellfish Immunol ; 147: 109460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382690

RESUMEN

Polyethylene microplastics (PE-MPs) has become a global concern due to their widespread distribution and hazardous properties in aquatic habitats. In this study, the accumulation effect of PE-MPs in the intestine of large-scale loach (Paramisgurnus dabryanus) was explored by adding different concentrations of PE-MPs to the water, the destination of PE-MPs after breaking the intestinal barrier and the effects caused. The collected data showed that PE-MPs accumulation for 21d altered the histomorphology and antioxidant enzyme activity of the intestine, induced dysbiosis of the intestinal flora. 10 mg/L of PE-MPs induced a significant increase in the transcript levels of intestinal immunity factors in loach after 21d of exposure. Moreover, the levels of diamine oxidase (DAO) and d-lactic acid (D-Lac) in the gut and serum of loach were significantly increased after exposure to PE-MPs at all concentrations (1, 5, 10 mg/L). Subsequently, the presence of PE-MPs was detected in the blood, suggesting that the disruption of the intestinal multilayer barrier allowed PE-MPs to spill into the circulation. The accumulation of PE-MPs (1,5,10 mg/L) in the blood led to massive apoptosis and necrosis of blood cells and activated phagocytosis in response to PE-MPs invasion. To alleviate the damage, this study further exposure the effect of probiotics on PE-MPs treated loach by adding Leuconostoc mesenteroides DH (109 CFU/g) to the feed. The results showed that DH significantly increased the intestinal index and reduced the levels of DAO and D-Lac. To investigate the reason, we followed the PE-MPs in the intestine and blood of the loach and found that the number of PE-MPs particles was significantly reduced in the probiotic group, while the PE-MPs content in the feces was elevated. Thus, we concluded that DH reducing the accumulation of PE-MPs in the intestinal by increases fecal PE-MPs, which in turn mitigates the damage to the intestinal barrier caused by PE-MPs, and reduces the amount of PE-MPs in the blood. This work offers a robust analysis to understand the mechanisms of damage to the intestinal barrier by MPs and the fate of MPs after escaping the intestinal barrier and provide a new perspective on the application of probiotics in mitigating PE-MPs toxicity.


Asunto(s)
Cipriniformes , Leuconostoc mesenteroides , Animales , Polietileno , Microplásticos , Plásticos , Antioxidantes , Intestinos , Células Sanguíneas , Inmunidad
9.
Fish Shellfish Immunol ; 145: 109375, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218424

RESUMEN

As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 µm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.


Asunto(s)
Carpas , MicroARNs , Contaminantes Químicos del Agua , Animales , Polietileno , Microplásticos , Plásticos , Quinasas Asociadas a Receptores de Interleucina-1 , FN-kappa B , Músculos , Apoptosis , Estrés del Retículo Endoplásmico , Inflamación , Estrés Oxidativo
10.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38577774

RESUMEN

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Asunto(s)
Polietileno , Contaminantes Químicos del Agua , Polietileno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos , Siliconas
11.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38685194

RESUMEN

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Asunto(s)
Microplásticos , Plásticos , Polietileno/química , Monitoreo del Ambiente , Biomarcadores Ambientales
12.
Environ Sci Technol ; 58(2): 1329-1337, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38163930

RESUMEN

While it is well established that a biofilm contributes to the sinking of plastics, the underlying mechanisms of how it influences the vertical transport of plastics have not been well explained. In this context, our study dives into the intricate effects of biofouling on the settling velocity (Ws) of microplastics (MPs) within the fluid. We adopt the perspective that the biofilm is a form of surface roughness impacting the drag coefficient (Cd) and vertical settling of MPs. By advancing the biofouling process model, we simulate the temporal variations of density and biofilm thickness of biofouled floating MPs, accounting for realistic parameters and assuming a layer-by-layer growth of biofilm on plastisphere surfaces. MPs of polyethylene (PE) exhibit a quicker initiation of descent compared to their polypropylene (PP) counterparts. Furthermore, leveraging computational fluid dynamics (CFD) simulation, the method to predict the Cd of spherical MPs with surface roughness is established. By treating the thickness of the biofilm as roughness height, an explicit method to predict the Ws of biofouled MPs is derived. The settling experiments for biofouled MPs conducted not only support the combination of the biofouling model and the explicit method to predict the Ws of biofouled MPs but also enhance the prediction accuracy by introducing a ratio parameter Co to better relate the equivalent surface roughness height (k) to the biofilm thickness (σ), i.e., k = Co·σ, where the recommended value of Co for spherical PP and PE MPs is between 0.5 to 0.8. This study, thus, provides new insights into the dynamics of biofouled MPs in hydraulic ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Ecosistema , Contaminantes Químicos del Agua/análisis , Biopelículas , Polipropilenos , Polietileno
13.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38977269

RESUMEN

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Asunto(s)
Agricultura , Cromatografía de Gases y Espectrometría de Masas , Plásticos , Polietileno , Pirólisis , Contaminantes del Suelo , Suelo , Polietileno/química , Suelo/química , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Microplásticos/análisis , Tereftalatos Polietilenos/química , Monitoreo del Ambiente/métodos
14.
Environ Sci Technol ; 58(23): 10207-10215, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38809092

RESUMEN

Plastic pollution, a major environmental crisis, has a variety of consequences for various organisms within aquatic systems. Beyond the direct toxicity, plastic pollution has the potential to absorb biological toxins and invasive microbial species. To better understand the capability of environmental plastic debris to adsorb these species, we investigated the binding of the model protein bovine serum albumin (BSA) to polyethylene (PE) films at various stages of photodegradation. Circular dichroism and fluorescence studies revealed that BSA undergoes structural rearrangement to accommodate changes to the polymer's surface characteristics (i.e., crystallinity and oxidation state) that occur as the result of photodegradation. To understand how protein structure may inform docking of whole organisms, we studied biofilm formation of bacteriaShewanella oneidensison the photodegraded PE. Interestingly, biofilms preferentially formed on the photodegraded PE that correlated with the state of weathering that induced the most significant structural rearrangement of BSA. Taken together, our work suggests that there are optimal physical and chemical properties of photodegraded polymers that predict which plastic debris will carry biochemical or microbial hitchhikers.


Asunto(s)
Plásticos , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Plásticos/química , Animales , Bovinos , Biopelículas , Polietileno/química , Fotólisis
15.
Macromol Rapid Commun ; 45(14): e2400064, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594967

RESUMEN

Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.


Asunto(s)
Polietileno , Polietileno/química , Biomasa , Fermentación
16.
Oecologia ; 204(2): 413-425, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194087

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) are now widely recognized as a ubiquitous and pervasive environmental pollutant with important consequences for aquatic fauna in particular; however, little is known regarding their potential effects on interactions between hosts and their parasites or pathogens. We conducted a literature survey of published studies that have conducted empirical investigations of MP and NP influences on infectious disease dynamics to summarize the current state of knowledge. In addition, we examined the effects of microbead (MB) ingestion on the longevity of freshwater snails (Stagnicola elodes) infected by the trematode Plagiorchis sp., along with their production of infectious stages (cercariae), with a 3-week lab study during which snails were fed food cubes containing either 0, 10 or 100 polyethylene MBs sized 106-125 µm. We found 22 studies that considered MP and NP influences on host resistance or tolerance-20 of these focused on aquatic systems, but there was no clear pattern in terms of host effects. In our lab study, MB diet had marginal or few effects on snail growth and mortality, but snails exhibited a significant non-monotonic response with respect to cercariae production as this was greatest in those fed the high-MB diet. Both our literature summary and experimental study indicate that MPs and NPs can have complex and unpredictable effects on infectious disease dynamics, with an urgent need for more investigations that examine how plastics can affect aquatic fauna through direct and indirect means.


Asunto(s)
Enfermedades Transmisibles , Microplásticos , Humanos , Interacciones Huésped-Parásitos , Plásticos , Polietileno
17.
Environ Res ; 246: 118154, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218520

RESUMEN

The management of plastic waste (PW) has become an indispensable worldwide issue because of the enhanced accumulation and environmental impacts of these waste materials. Thermo-catalytic pyrolysis has been proposed as an emerging technology for the valorization of PW into value-added liquid fuels. This review provides a comprehensive investigation of the latest advances in thermo-catalytic pyrolysis of PW for liquid fuel generation, by emphasizing polyethylene, polypropylene, and polystyrene. To this end, the current strategies of PW management are summarized. The various parameters affecting the thermal pyrolysis of PW (e.g., temperature, residence time, heating rate, pyrolysis medium, and plastic type) are discussed, highlighting their significant influence on feed reactivity, product yield, and carbon number distribution of the pyrolysis process. Optimizing these parameters in the pyrolysis process can ensure highly efficient energy recovery from PW. In comparison with non-catalytic PW pyrolysis, catalytic pyrolysis of PW is considered by discussing mechanisms, reaction pathways, and the performance of various catalysts. It is established that the introduction of either acid or base catalysts shifts PW pyrolysis from the conventional free radical mechanism towards the carbonium ion mechanism, altering its kinetics and pathways. This review also provides an overview of PW pyrolysis practicality for scaling up by describing techno-economic challenges and opportunities, environmental considerations, and presenting future outlooks in this field. Overall, via investigation of the recent research findings, this paper offers valuable insights into the potential of thermo-catalytic pyrolysis as an emerging strategy for PW management and the production of liquid fuels, while also highlighting avenues for further exploration and development.


Asunto(s)
Poliestirenos , Pirólisis , Polienos , Polietileno , Plásticos
18.
Environ Res ; 241: 117560, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949290

RESUMEN

The properties of biocarriers significantly influence the performance of a moving bed-biofilm reactor (MBBR). This study aimed to assess the impact of media type, filling ratio, and hydraulic retention time (HRT) on biofilm formation and MBBR performance in both batch and continuous setups using real municipal wastewater. Two different media, high-density polyethylene (HDPE) and polypropylene (PPE), with varying surface area and properties were used. Biofilm growth and MBBR performance were monitored and optimized using response surface methodology. The effect of different media was investigated for three filling ratios of 20%, 40% and 60% and HRT of 4, 6 and 8 h. Results depicted a better biofilm growth on HDPE media in comparison to PPE carriers due to difference in media structure and surface properties. At all the conditions tested, HDPE media showed comparatively better performance for the removal of organic matter and nutrients than PPE media. The maximum organic matter removal efficiency was found as 77% and 75% at an HRT of 6 h and filling ratio of 40% for HDPE and PPE media, respectively. The ammonia removal was also found better for HDPE media due to its geometry and structure favoring the anoxic conditions with maximum removal of 89% achieved at 6-h HRT and 40% filling ratio. Overall, the system with HDPE media indicated more stability in terms of reactor performance than PPE carriers with variations in the operating conditions.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Biopelículas , Polietileno , Reactores Biológicos
19.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704010

RESUMEN

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Asunto(s)
Biomasa , Plomo , Microplásticos , Polietileno , Microbiología del Suelo , Contaminantes del Suelo , Plomo/toxicidad , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Polietileno/toxicidad , Suelo/química , Ecotoxicología
20.
Environ Res ; 248: 118342, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295980

RESUMEN

Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.


Asunto(s)
Arachis , Suelo , Suelo/química , Agricultura/métodos , Bacterias , Polietileno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA