Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 628(8006): 104-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350601

RESUMEN

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Asunto(s)
Alquenos , Catálisis , Hidrógeno , Ácidos/química , Alcoholes/química , Alquenos/química , Biomimética , Hidrógeno/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
2.
Nature ; 628(8007): 326-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480891

RESUMEN

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.


Asunto(s)
Carbono , Técnicas de Química Sintética , Compuestos Heterocíclicos con 1 Anillo , Preparaciones Farmacéuticas , Carbono/química , Ciclización , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Solubilidad , Oxidación-Reducción , Fotoquímica , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Técnicas de Química Sintética/métodos
3.
Nature ; 631(8021): 556-562, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806060

RESUMEN

Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.


Asunto(s)
Técnicas de Química Sintética , Hidrogenación , Iminas , Nitrilos , Estereoisomerismo , Aminas/química , Aminas/síntesis química , Catálisis , Iminas/química , Manganeso/química , Nitrilos/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Especificidad por Sustrato , Alquilación
4.
Nature ; 634(8034): 592-599, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208847

RESUMEN

The incorporation of deuterium in organic molecules has widespread applications in medicinal chemistry and materials science1,2. For example, the deuterated drugs austedo3, donafenib4 and sotyktu5 have been recently approved. There are various methods for the synthesis of deuterated compounds with high deuterium incorporation6. However, the reductive deuteration of aromatic hydrocarbons-ubiquitous chemical feedstocks-to saturated cyclic compounds has rarely been achieved. Here we describe a scalable and general electrocatalytic method for the reductive deuteration and deuterodefluorination of (hetero)arenes using a prepared nitrogen-doped electrode and deuterium oxide (D2O), giving perdeuterated and saturated deuterocarbon products. This protocol has been successfully applied to the synthesis of 13 highly deuterated drug molecules. Mechanistic investigations suggest that the ruthenium-deuterium species, generated by electrolysis of D2O in the presence of a nitrogen-doped ruthenium electrode, are key intermediates that directly reduce aromatic compounds. This quick and cost-effective methodology for the preparation of highly deuterium-labelled saturated (hetero)cyclic compounds could be applied in drug development and metabolism studies.


Asunto(s)
Técnicas de Química Sintética , Óxido de Deuterio , Electroquímica , Electrodos , Nitrógeno , Preparaciones Farmacéuticas , Rutenio , Catálisis , Técnicas de Química Sintética/métodos , Ciclización , Óxido de Deuterio/química , Electroquímica/instrumentación , Electroquímica/métodos , Electrólisis , Halogenación , Hidrocarburos Aromáticos/química , Hidrocarburos Aromáticos/síntesis química , Nitrógeno/química , Oxidación-Reducción , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Rutenio/química
5.
Nature ; 634(8034): 585-591, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208848

RESUMEN

The selective cross-coupling of two alkyl electrophiles to construct complex molecules remains a challenge in organic synthesis1,2. Known reactions are optimized for specific electrophiles and are not amenable to interchangeably varying electrophilic substrates that are sourced from common alkyl building blocks, such as amines, carboxylic acids and halides3-5. These limitations restrict the types of alkyl substrate that can be modified and, ultimately, the chemical space that can be explored6. Here we report a general solution to these limitations that enables a combinatorial approach to alkyl-alkyl cross-coupling reactions. This methodology relies on the discovery of unusually persistent Ni(alkyl) complexes that can be formed directly by oxidative addition of alkyl halides, redox-active esters or pyridinium salts. The resulting alkyl complexes can be isolated or directly telescoped to couple with a second alkyl electrophile, which represent cross-selective reactions that were previously unknown. The utility of this synthetic capability is showcased in the rapid diversification of amino acids, natural products, pharmaceuticals and drug-like building blocks by various combinations of dehalogenative, decarboxylative or deaminative coupling. In addition to a robust scope, this work provides insights into the organometallic chemistry of synthetically relevant Ni(alkyl) complexes through crystallographic analysis, stereochemical probes and spectroscopic studies.


Asunto(s)
Aminoácidos , Productos Biológicos , Técnicas de Química Sintética , Níquel , Preparaciones Farmacéuticas , Alquilación , Aminoácidos/síntesis química , Aminoácidos/química , Productos Biológicos/química , Productos Biológicos/síntesis química , Técnicas de Química Sintética/métodos , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ésteres/química , Ésteres/síntesis química , Níquel/química , Oxidación-Reducción , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Desaminación , Descarboxilación , Halógenos/química , Cristalografía , Estereoisomerismo , Análisis Espectral , Compuestos de Piridinio/química
6.
Nature ; 615(7950): 67-72, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36603811

RESUMEN

Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.


Asunto(s)
Dióxido de Carbono , Electroquímica , Pirazinas , Piridinas , Pirimidinas , Quinolinas , Hidrógeno/química , Pirazinas/química , Piridinas/química , Pirimidinas/química , Electroquímica/métodos , Dióxido de Carbono/química , Quinolinas/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
7.
Nature ; 623(7985): 77-82, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914946

RESUMEN

When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.


Asunto(s)
Carbono , Técnicas de Química Sintética , Nitrógeno , Quinazolinas , Quinolinas , Carbono/química , Nitrógeno/química , Quinazolinas/síntesis química , Quinazolinas/química , Quinolinas/química , Oxidación-Reducción , Diseño de Fármacos , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
8.
Nature ; 623(7988): 745-751, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37788684

RESUMEN

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Asunto(s)
Productos Biológicos , Técnicas de Química Sintética , Descarboxilación , Electroquímica , Electrodos , Preparaciones Farmacéuticas , Ácidos Carboxílicos/química , Nanopartículas del Metal/química , Oxidación-Reducción , Plata/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Níquel/química , Ligandos , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Electroquímica/métodos , Técnicas de Química Sintética/métodos
9.
Nature ; 610(7933): 680-686, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049504

RESUMEN

Research in the field of asymmetric catalysis over the past half century has resulted in landmark advances, enabling the efficient synthesis of chiral building blocks, pharmaceuticals and natural products1-3. A small number of asymmetric catalytic reactions have been identified that display high selectivity across a broad scope of substrates; not coincidentally, these are the reactions that have the greatest impact on how enantioenriched compounds are synthesized4-8. We postulate that substrate generality in asymmetric catalysis is rare not simply because it is intrinsically difficult to achieve, but also because of the way chiral catalysts are identified and optimized9. Typical discovery campaigns rely on a single model substrate, and thus select for high performance in a narrow region of chemical space. Here we put forth a practical approach for using multiple model substrates to select simultaneously for both enantioselectivity and generality in asymmetric catalytic reactions from the outset10,11. Multisubstrate screening is achieved by conducting high-throughput chiral analyses by supercritical fluid chromatography-mass spectrometry with pooled samples. When applied to Pictet-Spengler reactions, the multisubstrate screening approach revealed a promising and unexpected lead for the general enantioselective catalysis of this important transformation, which even displayed high enantioselectivity for substrate combinations outside of the screening set.


Asunto(s)
Productos Biológicos , Técnicas de Química Sintética , Preparaciones Farmacéuticas , Productos Biológicos/síntesis química , Productos Biológicos/química , Catálisis , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Estereoisomerismo , Especificidad por Sustrato , Cromatografía con Fluido Supercrítico , Espectrometría de Masas , Técnicas de Química Sintética/métodos
10.
Nature ; 581(7808): 288-293, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433618

RESUMEN

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine1. Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules1. Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington's disease2, was recently approved by the United States' Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial1,3,4. The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound5, improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug6,7, these processes are often unselective and the stereoisotopic purity can be difficult to measure7,8. Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Asunto(s)
Benceno/química , Técnicas de Química Sintética , Ciclohexenos/química , Ciclohexenos/síntesis química , Deuterio/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Bases de Datos de Compuestos Químicos , Cinética , Estructura Molecular , Estereoisomerismo , Tetrabenazina/análogos & derivados , Tetrabenazina/síntesis química , Tetrabenazina/química , Tungsteno/química
11.
Nature ; 580(7802): 220-226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066140

RESUMEN

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles3-13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


Asunto(s)
Técnicas de Química Sintética , Cobre/química , Pentanos/química , Pentanos/síntesis química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/metabolismo , Ciclización , Preparaciones Farmacéuticas/metabolismo
12.
Nature ; 580(7805): 621-627, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32179876

RESUMEN

Frequently referred to as the 'magic methyl effect', the installation of methyl groups-especially adjacent (α) to heteroatoms-has been shown to dramatically increase the potency of biologically active molecules1-3. However, existing methylation methods show limited scope and have not been demonstrated in complex settings1. Here we report a regioselective and chemoselective oxidative C(sp3)-H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C-H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C-H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp3)-H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites-including drugs (for example, tedizolid) and natural products-are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates-an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1-via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/síntesis química , Carbono/química , Técnicas de Química Sintética , Hidrógeno/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Androstenos/síntesis química , Androstenos/química , Catálisis , Agonismo Inverso de Drogas , Electrones , Flúor/química , Hidroxilación , Ácidos de Lewis/química , Manganeso/química , Metilación , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Oxazolidinonas/síntesis química , Oxazolidinonas/química , Oxidación-Reducción , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Tetrazoles/síntesis química , Tetrazoles/química
13.
Nature ; 573(7772): 102-107, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485055

RESUMEN

Amides and related carbonyl derivatives are of central importance across the physical and life sciences1,2. As a key biological building block, the stability and conformation of amides affect the structures of peptides and proteins as well as their biological function. In addition, amide-bond formation is one of the most frequently used chemical transformations3,4. Given their ubiquity, a technology that is capable of modifying the fundamental properties of amides without compromising on stability may have considerable potential in pharmaceutical, agrochemical and materials science. In order to influence the physical properties of organic molecules-such as solubility, lipophilicity, conformation, pKa and (metabolic) stability-fluorination approaches have been widely adopted5-7. Similarly, site-specific modification with isosteres and peptidomimetics8, or in particular by N-methylation9, has been used to improve the stability, physical properties, bioactivities and cellular permeabilities of compounds. However, the N-trifluoromethyl carbonyl motif-which combines both N-methylation and fluorination approaches-has not yet been explored, owing to a lack of efficient methodology to synthesize it. Here we report a straightforward method to access N-trifluoromethyl analogues of amides and related carbonyl compounds. The strategy relies on the operationally simple preparation of bench-stable carbamoyl fluoride building blocks, which can be readily diversified to the corresponding N-CF3 amides, carbamates, thiocarbamates and ureas. This method tolerates rich functionality and stereochemistry, and we present numerous examples of highly functionalized compounds-including analogues of widely used drugs, antibiotics, hormones and polymer units.


Asunto(s)
Amidas/química , Carbamatos/química , Urea/análogos & derivados , Urea/química , Fluoruros/química , Isotiocianatos/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
14.
Nature ; 569(7758): 703-707, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31022719

RESUMEN

The presence of a quaternary centre-a carbon with four other carbons bonded to it-in any given molecule can have a substantial chemical and biological impact. In many cases, it can enable otherwise challenging chemistry. For example, quaternary centres induce large rate enhancements in cyclization reactions-known as the Thorpe-Ingold effect-which has application in drug delivery for molecules with modest bioavailability1. Similarly, the addition of quaternary centres to a drug candidate can enhance both its activity and its metabolic stability2. When present in chiral ligands3, catalysts4 and auxiliaries5, quaternary centres can guide reactions toward both improved and unique regio-, stereo- and/or enantioselectivity. However, owing to their distinct steric congestion and conformational restriction, the formation of quaternary centres can be achieved reliably by only a few chemical transformations6,7. For particularly challenging cases-for example, the vicinal all-carbon8, oxa- and aza-quaternary centres9 in molecules such as azadirachtin10,11, scopadulcic acid A12,13 and acutumine14-the development of target-specific approaches as well as multiple functional-group and redox manipulations is often necessary. It is therefore desirable to establish alternative ways in which quaternary centres can positively affect and guide synthetic planning. Here we show that if a synthesis is designed such that each quaternary centre is deliberately leveraged to simplify the construction of the next-either through rate acceleration or blocking effects-then highly efficient, scalable and modular syntheses can result. This approach is illustrated using the conidiogenone family of terpenes as a representative case; however, this framework provides a distinct planning logic that is applicable to other targets of similar synthetic complexity that contain multiple quaternary centres.


Asunto(s)
Técnicas de Química Sintética , Terpenos/química , Terpenos/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Catálisis , Diterpenos/síntesis química , Diterpenos/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
15.
Nature ; 575(7782): 336-340, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723273

RESUMEN

Organoboron reagents are important synthetic intermediates that have a key role in the construction of natural products, pharmaceuticals and organic materials1. The discovery of simpler, milder and more efficient approaches to organoborons can open additional routes to diverse substances2-5. Here we show a general method for the directed C-H borylation of arenes and heteroarenes without the use of metal catalysts. C7- and C4-borylated indoles are produced by a mild approach that is compatible with a broad range of functional groups. The mechanism, which is established by density functional theory calculations, involves BBr3 acting as both a reagent and a catalyst. The potential utility of this strategy is highlighted by the downstream transformation of the formed boron species into natural products and drug scaffolds.


Asunto(s)
Compuestos de Boro/química , Compuestos de Boro/síntesis química , Boro/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Teoría Funcional de la Densidad , Descubrimiento de Drogas , Indoles/química , Compuestos Organometálicos/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
16.
Chem Soc Rev ; 53(9): 4607-4647, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38525675

RESUMEN

Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.


Asunto(s)
Alcoholes , Alcoholes/química , Alcoholes/síntesis química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Productos Biológicos/química , Productos Biológicos/síntesis química , Indicadores y Reactivos/química , Alquilación , Estructura Molecular , Alquenos/química , Alquenos/síntesis química , Tecnología Química Verde
17.
J Am Chem Soc ; 146(17): 11866-11875, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621677

RESUMEN

The available methods of chemical synthesis have arguably contributed to the prevalence of aromatic rings, such as benzene, toluene, xylene, or pyridine, in modern pharmaceuticals. Many such sp2-carbon-rich fragments are now easy to synthesize using high-quality cross-coupling reactions that click together an ever-expanding menu of commercially available building blocks, but the products are flat and lipophilic, decreasing their odds of becoming marketed drugs. Converting flat aromatic molecules into saturated analogues with a higher fraction of sp3 carbons could improve their medicinal properties and facilitate the invention of safe, efficacious, metabolically stable, and soluble medicines. In this study, we show that aromatic and heteroaromatic drugs can be readily saturated under exceptionally mild rhodium-catalyzed hydrogenation, acid-mediated reduction, or photocatalyzed-hydrogenation conditions, converting sp2 carbon atoms into sp3 carbon atoms and leading to saturated molecules with improved medicinal properties. These methods are productive in diverse pockets of chemical space, producing complex saturated pharmaceuticals bearing a variety of functional groups and three-dimensional architectures. The rhodium-catalyzed method tolerates traces of dimethyl sulfoxide (DMSO) or water, meaning that pharmaceutical compound collections, which are typically stored in wet DMSO, can finally be reformatted for use as substrates for chemical synthesis. This latter application is demonstrated through the late-stage saturation (LSS) of 768 complex and densely functionalized small-molecule drugs.


Asunto(s)
Rodio , Catálisis , Rodio/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Hidrogenación , Estructura Molecular
18.
J Org Chem ; 89(21): 15387-15392, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39401427

RESUMEN

Pharmaceutical synthesis requires a diversity of chemical reactions. The discovery of new reactions enable novel retrosynthetic disconnections, potentially expediting access to complex molecules. This Synopsis demonstrates the use of enumerative combinatorics to find impactful underdeveloped reactions for drug synthesis. By mapping pharmaceutical target molecules onto available building blocks using just one retrosynthetic disconnection even if the requisite reaction is not yet known, we highlight the importance of site-selective C-H cross-coupling methods. This cheminformatics-driven retrosynthetic analysis identifies novel reaction methods of value to the synthesis toolbox.


Asunto(s)
Hidrógeno , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Estructura Molecular , Hidrógeno/química , Carbono/química
19.
J Org Chem ; 89(17): 12452-12461, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39161164

RESUMEN

An efficient catalytic borylation reaction of aryl bromides in water based on Pd catalysis under micellar conditions is presented. The peculiar combination of the proper Pd precursor with a Sphos ligand and a hindered lipophilic base ensures good yields in the synthesis of a wide range of boronic esters, even for heteroaryl derivatives with a good purity profile. The method is specifically developed for the in situ preparation of boronic esters that are directly converted into examples of relevant active pharmaceutical ingredient intermediates through cross-coupling reactions or via oxidation to phenols.


Asunto(s)
Paladio , Agua , Paladio/química , Catálisis , Agua/química , Estructura Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Ésteres/química , Ácidos Borónicos/química
20.
J Chem Inf Model ; 64(14): 5470-5479, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38940765

RESUMEN

Computer-assisted synthesis planning has become increasingly important in drug discovery. While deep-learning models have shown remarkable progress in achieving high accuracies for single-step retrosynthetic predictions, their performances in retrosynthetic route planning need to be checked. This study compares the intricate single-step models with a straightforward template enumeration approach for retrosynthetic route planning on a real-world drug molecule data set. Despite the superior single-step accuracy of advanced models, the template enumeration method with a heuristic-based retrosynthesis knowledge score was found to surpass them in efficiency in searching the reaction space, achieving a higher or comparable solve rate within the same time frame. This counterintuitive result underscores the importance of efficiency and retrosynthesis knowledge in retrosynthesis route planning and suggests that future research should incorporate a simple template enumeration as a benchmark. It also suggests that this simple yet effective strategy should be considered alongside more complex models to better cater to the practical needs of computer-assisted synthesis planning in drug discovery.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Aprendizaje Profundo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA