Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(4): 803-817.e16, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057114

RESUMEN

Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.


Asunto(s)
Cromatina/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Histonas/metabolismo , Lisina/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Ciclo Celular , Células HEK293 , Humanos , Proteína 2 de Unión a Retinoblastoma/genética
2.
Genes Dev ; 33(23-24): 1718-1738, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727771

RESUMEN

More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.


Asunto(s)
Diferenciación Celular/genética , Células Neuroendocrinas/citología , Receptores Notch/fisiología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Histona Demetilasas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Células Neuroendocrinas/patología , Carcinoma Pulmonar de Células Pequeñas/fisiopatología
3.
Exp Cell Res ; 437(1): 113991, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462208

RESUMEN

The compound 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) is an inhibitor of the KDM5 family of lysine-specific histone demethylases that has been suggested as a lead compound for cancer therapy. The goal of this study was to explore the effects of PBIT within human prostate cancers. Micromolar concentrations of PBIT altered proliferation of castration-sensitive LNCaP and castration-resistant C4-2B, LNCaP-MDV3100 and PC-3 human prostate cancer cell lines. We then characterized the mechanism underlying the anti-proliferative effects of PBIT within the C4-2B and PC-3 cell lines. Data from Cell Death ELISAs suggest that PBIT does not induce apoptosis within C4-2B or PC-3 cells. However, PBIT did increase the amount of senescence associated beta-galactosidase. PBIT also altered cell cycle progression and increased protein levels of the cell cycle protein p21. PC-3 and C4-2B cells express varying amounts of KDM5A, KDM5B, and KDM5C, the therapeutic targets of PBIT. siRNA-mediated knockdown studies suggest that inhibition of multiple KDM5 isoforms contribute to the anti-proliferative effect of PBIT. Furthermore, combination treatments involving PBIT and the PPARγ agonist 15-deoxy-Δ-12, 14 -prostaglandin J2 (15d-PGJ2) also reduced PC-3 cell proliferation. Together, these data strongly suggest that PBIT significantly reduces the proliferation of prostate cancers via a mechanism that involves cell cycle arrest and senescence.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proliferación Celular , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Apoptosis , Ciclo Celular , Proteína 2 de Unión a Retinoblastoma/metabolismo
4.
Cell ; 139(7): 1290-302, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20064375

RESUMEN

Polycomb Repressive Complex 2 (PRC2) regulates key developmental genes in embryonic stem (ES) cells and during development. Here we show that Jarid2/Jumonji, a protein enriched in pluripotent cells and a founding member of the Jumonji C (JmjC) domain protein family, is a PRC2 subunit in ES cells. Genome-wide ChIP-seq analyses of Jarid2, Ezh2, and Suz12 binding reveal that Jarid2 and PRC2 occupy the same genomic regions. We further show that Jarid2 promotes PRC2 recruitment to the target genes while inhibiting PRC2 histone methyltransferase activity, suggesting that it acts as a "molecular rheostat" that finely calibrates PRC2 functions at developmental genes. Using Xenopus laevis as a model we demonstrate that Jarid2 knockdown impairs the induction of gastrulation genes in blastula embryos and results in failure of differentiation. Our findings illuminate a mechanism of histone methylation regulation in pluripotent cells and during early cell-fate transitions.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mitocondrias/metabolismo , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , ARN/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo
5.
Bioessays ; 44(7): e2200015, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532219

RESUMEN

The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo
6.
Chem Pharm Bull (Tokyo) ; 72(7): 638-647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945940

RESUMEN

Lysine demethylase 5 (KDM5) proteins are involved in various neurological disorders, including Alzheimer's disease, and KDM5 inhibition is expected to be a therapeutic strategy for these diseases. However, the pharmacological effects of conventional KDM5 inhibitors are insufficient, as they only target the catalytic functionality of KDM5. To identify compounds that exhibit more potent pharmacological activity, we focused on proteolysis targeting chimeras (PROTACs), which degrade target proteins and thus inhibit their entire functionality. We designed and synthesized novel KDM5 PROTAC candidates based on previously identified KDM5 inhibitors. The results of cellular assays revealed that two compounds, 20b and 23b, exhibited significant neurite outgrowth-promoting activity through the degradation of KDM5A in neuroblastoma neuro 2a cells. These results suggest that KDM5 PROTACs are promising drug candidates for the treatment of neurological disorders.


Asunto(s)
Proyección Neuronal , Proteolisis , Proteolisis/efectos de los fármacos , Humanos , Proyección Neuronal/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Línea Celular Tumoral , Estructura Molecular , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Animales , Ratones , Relación Dosis-Respuesta a Droga , Quimera Dirigida a la Proteólisis
7.
Environ Toxicol ; 39(1): 341-356, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713600

RESUMEN

The Warburg effect is the preference of cancer cells to use glycolysis rather than oxidative phosphorylation to generate energy. Accumulating evidence suggests that aerobic glycolysis is widespread in hepatocellular carcinoma (HCC) and closely related to tumorigenesis. The purpose of this study was to investigate the role and mechanism of forkhead box P2 (FOXP2) in aerobic glycolysis and tumorigenesis in HCC. Here, we found that FOXP2 was lower expressed in HCC tissues and cells than in nontumor tissues and normal hepatocytes. Overexpression of FOXP2 suppressed cell proliferation and invasion of HCC cells and promoted cell apoptosis in vitro, and hindered the growth of mouse xenograft tumors in vivo. Further researches showed that FOXP2 inhibited the Warburg effect in HCC cells. Moreover, we demonstrated that FOXP2 up-regulated the expression of fructose-1, 6-diphosphatase (FBP1), and the inhibitory effect of FOXP2 on glycolysis was dependent on FBP1. Mechanistically, as a transcription factor, FOXP2 negatively regulated the transcription of lysine-specific demethylase 5A (KDM5A), and then blocked KDM5A-induced H3K4me3 demethylation in FBP1 promoter region, thereby promoting the expression of FBP1. Consistently, overexpressing KDM5A or silencing FBP1 effectively reversed the inhibitory effect of FOXP2 on HCC progression. Together, our findings revealed the mechanistic role of the FOXP2/KDM5A/FBP1 axis in glycolysis and malignant progression of HCC cells, providing a potential molecular target for the therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Glucólisis , Transformación Celular Neoplásica/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína 2 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción Forkhead/metabolismo
8.
Pol J Pathol ; 75(2): 83-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166517

RESUMEN

There is growing evidence that the KDM5 family of histone demethylases plays a causal role in human cancer. However, few studies have been reported on the KDM5 family in endometrial carcinoma (EC). Moreover, it was found that there was some correlation between the KDM5 family and FOXO1 in EC. The current study was performed to explore the expressions of KDM5A, KDM5B, and FOXO1 in endometrioid adenocarcinoma detected by immunohistochemistry; paracancer endometrium, simple hyperplastic endometrium, and normal endometrium were used as control groups to explore the possible diagnostic value of KDM5A and KDM5B expression in endometrioid adenocarcinoma, with the aim of evaluating the potential of this marker in predicting the prognosis of endometrioid adenocarcinoma.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Endometrioide , Neoplasias Endometriales , Proteína Forkhead Box O1 , Inmunohistoquímica , Histona Demetilasas con Dominio de Jumonji , Humanos , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Femenino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Histona Demetilasas con Dominio de Jumonji/metabolismo , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/metabolismo , Adulto , Anciano , Pronóstico , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/análisis , Relevancia Clínica , Proteínas Nucleares , Proteínas Represoras
9.
Blood ; 138(5): 370-381, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33786580

RESUMEN

Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Mutación con Pérdida de Función , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Humanos , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Ratones , Proteínas de Neoplasias/genética , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Biol Toxicol ; 39(4): 1641-1655, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36112263

RESUMEN

The importance of Fbxo22 in carcinogenesis has been highly documented. Here, we discussed downstream regulatory factors of Fbxo22 in TNBC. RNA-sequencing was conducted for identifying differentially expressed genes, followed by construction of a regulatory network. Expression patterns of Fbxo22/KDM5A in TNBC were determined by their correlation with the prognosis analyzed. Then, regulation mechanisms between Fbxo22 and KDM5A as well as between KDM5A and H3K4me3 were assayed. After silencing and overexpression experiments, the significance of Fbxo22 in repressing tumorigenesis in vitro and in vivo was explored. Fbxo22 was poorly expressed, while KDM5A was highly expressed in TNBC. Patients with elevated Fbxo22, decreased KDM5A, or higher p16 had long overall survival. Fbxo22 reduced the levels of KDM5A by ubiquitination. KDM5A promoted histone H3K4me3 demethylation to downregulate p16 expression. Fbxo22 reduced KDM5A expression to enhance p16, thus inducing DNA damage as well as reducing tumorigenesis and metastasis in TNBC. Our study validated FBXO22 as a tumor suppressor in TNBC through ubiquitination of KDM5A and regulation of p16.


Asunto(s)
Proteínas F-Box , Neoplasias de la Mama Triple Negativas , Humanos , Histonas/metabolismo , Ubiquitina/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Carcinogénesis/genética , Desmetilación , Línea Celular Tumoral , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
Genes Dev ; 29(17): 1817-34, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314709

RESUMEN

The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mitocondrias/enzimología , Mitocondrias/genética , Proteína de Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , Ratones , Proteínas Mitocondriales/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteína de Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Proteins ; 90(3): 645-657, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34642975

RESUMEN

KDM5A over-expression mediates cancer cell proliferation and promotes resistance toward chemotherapy through epigenetic modifications. As its complete mechanism of action is still unknown, there is no KDM5A specific drug available at clinical level. In the current study, lead compounds for KDM5A were determined through pharmacophore modeling and high-throughput virtual screening from Asinex libraries containing 0.5 million compounds. These virtual hits were further evaluated and filtered for ADMET properties. Finally, 726 compounds were used for docking analysis against KDM5A. On the basis of docking score, 10 top-ranked compounds were selected and further evaluated for non-central nervous system (CNS) and CNS drug-like properties. Among these compounds, N-{[(7-Methyl-4-oxo-1,2,3,4-tetrahydrocyclopenta [c] chromen-9-yl) oxy]acetyl}-l-phenylalanine (G-score: -11.363 kcal/mol) was estimated to exhibit non-CNS properties while 2-(3,4-Dimethoxy-phenyl)-7-methoxy-chromen-4-one (G-score: -7.977 kcal/mol) was evaluated as CNS compound. Docked complexes of both compounds were finally selected for molecular dynamic simulation to examine the stability. This study concluded that both these compounds can serve as lead compounds in the quest of finding therapeutic agents against KDM5A associated cancers.


Asunto(s)
Antineoplásicos/química , Fenilalanina/química , Proteína 2 de Unión a Retinoblastoma/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Diseño Asistido por Computadora , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Ligandos , Simulación del Acoplamiento Molecular , Fenilalanina/farmacología , Unión Proteica , Relación Estructura-Actividad , Termodinámica
13.
J Cell Mol Med ; 25(8): 4040-4052, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621431

RESUMEN

Hepatocellular cancer (HCC) has been reported to belong to one of the highly vascularized solid tumours accompanied with angiogenesis of human umbilical vein endothelial cells (HUVECs). KDM5A, an attractive drug target, plays a critical role in diverse physiological processes. Thus, this study aims to investigate its role in angiogenesis and underlying mechanisms in HCC. ChIP-qPCR was utilized to validate enrichment of H3K4me3 and KDM5A on the promotor region of miR-433, while dual luciferase assay was carried out to confirm the targeting relationship between miR-433 and FXYD3. Scratch assay, transwell assay, Edu assay, pseudo-tube formation assay and mice with xenografted tumours were conducted to investigate the physiological function of KDM5A-miR-433-FXYD3-PI3K-AKT axis in the progression of HCC after loss- and gain-function assays. KDM5A p-p85 and p-AKT were highly expressed but miR-433 was down-regulated in HCC tissues and cell lines. Depletion of KDM5A led to reduced migrative, invasive and proliferative capacities in HCC cells, including growth and a lowered HUVEC angiogenic capacity in vitro. Furthermore, KDM5A suppressed the expression of miR-433 by demethylating H3K4me3 on its promoterregion. miR-433 negatively targeted FXYD3. Depleting miR-433 or re-expressing FXYD3 restores the reduced migrative, invasive and proliferative capacities, and lowers the HUVEC angiogenic capacity caused by silencing KDM5A. Therefore, KDM5A silencing significantly suppresses HCC tumorigenesis in vivo, accompanied with down-regulated miR-433 and up-regulated FXYD3-PI3K-AKT axis in tumour tissues. Lastly, KDM5A activates the FXYD3-PI3K-AKT axis to enhance angiogenesis in HCC by suppressing miR-433.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de la Membrana/antagonistas & inhibidores , MicroARNs/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Neovascularización Patológica/prevención & control , Fosfatidilinositol 3-Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Anciano , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas
14.
Anal Biochem ; 633: 114429, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678252

RESUMEN

A major regulatory influence over gene expression is the dynamic post translational methylation of histone proteins, with major implications from both lysine methylation and demethylation. The KDM5/JARID1 sub-family of Fe(II)/2-oxoglutarate dependent lysine-specific demethylases is, in part, responsible for the removal of tri/dimethyl modifications from lysine 4 of histone H3 (i.e., H3K4me3/2), a mark associated with active gene expression. Although the relevance of KDM5 activity to disease progression has been primarily established through its ability to regulate gene expression via histone methylation, there is evidence that these enzymes may also target non-histone proteins. To aid in the identification of new non-histone substrates, we examined KDM5A in vitro activity towards a library of 180 permutated peptide substrates derived from the H3K4me3 sequence. From this data, a recognition motif was identified and used to predict candidate KDM5A substrates from the methyllysine proteome. High-ranking candidate substrates were then validated for in vitro KDM5A activity using representative trimethylated peptides. Our approach correctly identified activity towards 90% of high-ranked substrates. Here, we have demonstrated the usefulness of our method in identifying candidate substrates that is applicable to any Fe(II)- and 2-oxoglutarate dependent demethylase.


Asunto(s)
Proteína 2 de Unión a Retinoblastoma/análisis , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Especificidad por Sustrato
15.
Exp Cell Res ; 396(2): 112314, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010254

RESUMEN

Gene expression is influenced at many layers by a fine-tuned crosstalk between multiple extrinsic signalling pathways and intrinsic regulatory molecules that respond to environmental stimuli. Epigenetic modifiers like DNA methyltransferases, histone modifying enzymes and chromatin remodellers are reported to act as triggering factors in many scenarios by exhibiting their control over most of the cellular processes. These epigenetic players can either directly regulate gene expression or interact with some effector molecules that harmonize the expression of downstream genes. One such epigenetic regulator which exhibits multifaceted regulation over gene expression is KDM5A. It is classically a transcriptional repressor acting as H3K4me3 demethylase, but also is reported to act as an activator in many contexts either by loss of activity due to inhibition manifested by other interacting proteins or by downregulating the negative players of a given physiological process thereby escalating the framework. Through this review, we draw attention to the remarkable modes of functioning laid by KDM5A on transcriptional and translational processes, affecting gene expression during differentiation and development and finally summing up on role in disease causation (Fig. 1). We also shed light on different orthologs of KDM5A and their organism specific roles, along with comparison of the sequence similarity to extrapolate some unanswered questions about this protein.


Asunto(s)
Células/metabolismo , Enfermedad , Desarrollo Embrionario , Proteína 2 de Unión a Retinoblastoma/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Proteína 2 de Unión a Retinoblastoma/química , Especificidad por Sustrato
16.
Exp Cell Res ; 396(1): 112277, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918895

RESUMEN

Human papillomavirus (HPV) infection and viral protein expression cause several epigenetic alterations that lead to cervical carcinogenesis. Our previous study identified that upregulated lysine-specific demethylase (KDM) 2 A promotes cervical cancer progression by inhibiting mircoRNA (miR)-132 function. However, the roles of histone methylation modifiers in HPV-related cervical cancer remain unclear. In the present study, changes in the expression of 48 histone methylation modifiers were assessed following knockdown of HPV16 E6/E7 in CaSki cells. The dysregulated expression of KDM5A was identified, and its function in cervical cancer was investigated in vitro and in vivo. E7 oncoprotein-induced upregulation of KDM5A promoted cervical cancer cell proliferation and invasiveness in vitro and in vivo, which was correlated with poor prognosis in patients with cervical cancer. KDM5A was found to physically interact with the promoter region of miR-424-5p, and to suppress its expression by removing the tri- and di-methyl groups from H3K4 at the miR-424-5p locus. Furthermore, miR-424-5p repressed cancer cell proliferation and invasiveness by targeting suppressor of zeste 12 (Suz12). KDM5A upregulation promoted cervical cancer progression by repressing miR-424-5p, which resulted in a decrease in Suz12. Therefore, KDM5A functions as a tumor activator in cervical cancer pathogenesis by binding to the miR-424-5p promoter and inhibiting its tumor-suppressive function. These results indicate a function for KDM5A in cervical cancer progression and suggest its candidacy as a novel prognostic biomarker and target for the clinical management of this malignancy.


Asunto(s)
Papillomavirus Humano 16/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/genética , Proteína 2 de Unión a Retinoblastoma/genética , Factores de Transcripción/genética , Neoplasias del Cuello Uterino/genética , Adulto , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Humanos , Metástasis Linfática , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Carga Tumoral , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445278

RESUMEN

Epigenetics play a vital role in early embryo development. Offspring conceived via assisted reproductive technologies (ARTs) have a three times higher risk of epigenetic diseases than naturally conceived children. However, investigations into ART-associated placental histone modifications or sex-stratified analyses of ART-associated histone modifications remain limited. In the current study, we carried out immunohistochemistry, chip-sequence analysis, and a series of in vitro experiments. Our results demonstrated that placentas from intra-cytoplasmic sperm injection (ICSI), but not in vitro fertilization (IVF), showed global tri-methylated-histone-H3-lysine-4 (H3K4me3) alteration compared to those from natural conception. However, for acetylated-histone-H3-lysine-9 (H3K9ac) and acetylated-histone-H3-lysine-27 (H3K27ac), no significant differences between groups could be found. Further, sex -stratified analysis found that, compared with the same-gender newborn cord blood mononuclear cell (CBMC) from natural conceptions, CBMC from ICSI-boys presented more genes with differentially enriched H3K4me3 (n = 198) than those from ICSI-girls (n = 79), IVF-girls (n = 5), and IVF-boys (n = 2). We also found that varying oxygen conditions, RNA polymerase II subunit A (Polr2A), and lysine demethylase 5A (KDM5A) regulated H3K4me3. These findings revealed a difference between IVF and ICSI and a difference between boys and girls in H3K4me3 modification, providing greater insight into ART-associated epigenetic alteration.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Epigénesis Genética , Histonas/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Caracteres Sexuales , Inyecciones de Esperma Intracitoplasmáticas , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Metilación , Embarazo
18.
Biochemistry ; 59(5): 647-651, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31985200

RESUMEN

Human lysine demethylase KDM5A is a chromatin-modifying enzyme associated with transcriptional regulation, because of its ability to catalyze removal of methyl groups from methylated lysine 4 of histone H3 (H3K4me3). Amplification of KDM5A is observed in many cancers, including breast cancer, prostate cancer, hepatocellular carcinoma, lung cancer, and gastric cancer. In this study, we employed alanine scanning mutagenesis to investigate substrate recognition of KDM5A and identify the H3 tail residues necessary for KDM5A-catalyzed demethylation. Our data show that the H3Q5 residue is critical for substrate recognition by KDM5A. Our data also reveal that the protein-protein interactions between KDM5A and the histone H3 tail extend beyond the amino acids proximal to the substrate mark. Specifically, demethylation activity assays show that deletion or mutation of residues at positions 14-18 on the H3 tail results in an 8-fold increase in the KMapp, compared to wild-type 18mer peptide, suggesting that this distal epitope is important in histone engagement. Finally, we demonstrate that post-translational modifications on this distal epitope can modulate KDM5A-dependent demethylation. Our findings provide insights into H3K4-specific recognition by KDM5A, as well as how chromatin context can regulate KDM5A activity and H3K4 methylation status.


Asunto(s)
Histonas/metabolismo , Neoplasias/enzimología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Biocatálisis , Histonas/química , Humanos , Metilación , Proteína 2 de Unión a Retinoblastoma/química , Especificidad por Sustrato
19.
J Biol Chem ; 294(24): 9642-9654, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31061100

RESUMEN

ß-Catenin signaling is triggered by WNT proteins and is an important pathway that negatively regulates adipogenesis. However, the mechanisms controlling the expression of WNT proteins during adipogenesis remain incompletely understood. Lysine demethylase 5A (KDM5A) is a histone demethylase that removes trimethyl (me3) marks from lysine 4 of histone 3 (H3K4) and serves as a general transcriptional corepressor. Here, using the murine 3T3-L1 preadipocyte differentiation model and an array of biochemical approaches, including ChIP, immunoprecipitation, RT-qPCR, and immunoblotting assays, we show that Kdm5a is a target gene of CCAAT/enhancer-binding protein ß (C/EBPß), an important early transcription factor required for adipogenesis. We found that C/EBPß binds to the Kdm5a gene promoter and transactivates its expression. We also found that siRNA-mediated KDM5A down-regulation inhibits 3T3-L1 preadipocyte differentiation. The KDM5A knockdown significantly up-regulates the negative regulator of adipogenesis Wnt6, having increased levels of the H3K4me3 mark on its promoter. We further observed that WNT6 knockdown significantly rescues adipogenesis inhibited by the KDM5A knockdown. Moreover, we noted that C/EBPß negatively regulates Wnt6 expression by binding to the Wnt6 gene promoter and repressing Wnt6 transcription. Further experiments indicated that KDM5A interacts with C/EBPß and that their interaction cooperatively inhibits Wnt6 transcription. Of note, C/EBPß knockdown impaired the recruitment of KDM5A to the Wnt6 promoter, which had higher H3K4me3 levels. Our results suggest a mechanism involving C/EBPß and KDM5A activities that down-regulates the Wnt/ß-catenin pathway during 3T3-L1 preadipocyte differentiation.


Asunto(s)
Adipocitos/citología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Proteína 2 de Unión a Retinoblastoma/metabolismo , Activación Transcripcional , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Regiones Promotoras Genéticas , Proteína 2 de Unión a Retinoblastoma/genética , Proteína Wnt1/genética , beta Catenina/genética
20.
Nucleic Acids Res ; 46(1): 174-188, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29059406

RESUMEN

The Histone 3 lysine 4 methylation (H3K4me3) mark closely correlates with active transcription. E2F-responsive promoters display dynamic changes in H3K4 methylation during the course of cell cycle progression. However, how and when these marks are reset, is not known. Here we show that the retinoblastoma binding protein RBP2/KDM5A, capable of removing tri-methylation marks on H3K4, associates with the E2F4 transcription factor via the pocket protein-p130-in a cell-cycle-stage specific manner. The association of RBP2 with p130 is LxCxE motif dependent. RNAi experiments reveal that p130 recruits RBP2 to E2F-responsive promoters in early G1 phase to bring about H3K4 demethylation and gene repression. A point mutation in LxCxE motif of RBP2 renders it incapable of p130-interaction and hence, repression of E2F-regulated gene promoters. We also examine how RBP2 may be recruited to non-E2F responsive promoters. Our studies provide insight into how the chromatin landscape needs to be adjusted rapidly and periodically during cell-cycle progression, concomitantly with temporal transcription, to bring about expression/repression of specific gene sets.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Células Cultivadas , Factor de Transcripción E2F4/metabolismo , Fase G1/genética , Células HeLa , Humanos , Metilación , Ratones , Mutación , Unión Proteica , Interferencia de ARN , Proteína 2 de Unión a Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Proteínas Celulares de Unión al Retinol/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA