RESUMEN
Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.
Asunto(s)
Microscopía por Crioelectrón , Antagonistas del Ácido Fólico , Metotrexato , Proteína Portadora de Folato Reducido , Aniones/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulación de Dinámica Molecular , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Proteína Portadora de Folato Reducido/ultraestructura , Especificidad por SustratoRESUMEN
Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.
Asunto(s)
Microscopía por Crioelectrón , Fosfatos de Dinucleósidos , Antagonistas del Ácido Fólico , Ácido Fólico , Nucleótidos Cíclicos , Animales , Humanos , Fosfatos de Dinucleósidos/metabolismo , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Mamíferos/metabolismo , Nucleótidos Cíclicos/metabolismo , Proteína Portadora de Folato Reducido/química , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Proteína Portadora de Folato Reducido/ultraestructuraRESUMEN
2'3'-cyclic-GMP-AMP (cGAMP) is a second messenger that activates the antiviral stimulator of interferon genes (STING) pathway. We recently identified a novel role for cGAMP as a soluble, extracellular immunotransmitter that is produced and secreted by cancer cells. Secreted cGAMP is then sensed by host cells, eliciting an antitumoral immune response. Due to the antitumoral effects of cGAMP, other CDN-based STING agonists are currently under investigation in clinical trials for metastatic solid tumors. However, it is unknown how cGAMP and other CDNs cross the cell membrane to activate intracellular STING. Using a genome-wide CRISPR screen, we identified SLC19A1 as the first known importer of cGAMP and other CDNs, including the investigational new drug 2'3'-bisphosphosphothioate-cyclic-di-AMP (2'3'-CDAS). These discoveries will provide insight into cGAMP's role as an immunotransmitter and aid in the development of more targeted CDN-based cancer therapeutics.
Asunto(s)
Inmunidad Innata/genética , Neoplasias/genética , Nucleótidos Cíclicos/genética , Proteína Portadora de Folato Reducido/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Membrana Celular/genética , Genoma Humano/genética , Humanos , Proteínas de la Membrana/genética , Neoplasias/inmunología , Nucleótidos Cíclicos/inmunología , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Immunomodulators are important for management of autoimmune diseases and hematological malignancies. Significant inter-individual variation in drug response/reactions exists due to genetic polymorphisms. We describe frequency of identified genetic polymorphisms among Sri Lankans. METHODS: Sri Lankan data were obtained from an anonymized database of 670 participants. Data on variants and global distribution of Minor Allele frequency (MAF) of other populations (South Asian, Ashkenazi-Jewish, East-Asian, European-Finnish, European-non-Finnish, Latino-American, African/African-American) were obtained from pharmGKB online database. RESULTS: SLC19A1 (rs1051266) variant had a MAF (95% CI) of 63.3% (60.7-65.9). Other common variants included FCGR3A (rs396991), MTHFR (rs1801133), ITPA (rs1127354), CYP2C9*3 (rs1057910) and NUD15*3 (rs116855232), with MAFs of 35.3% (32.7-37.9), 12.2% (10.4-13.9), 10.9% (9.2-12.6), 9.8% (8.2-11.4), 8.3% (6.8-9.8) respectively. Less commonly present variants included CYP2C9*2 (rs1799853) (2.5%[1.7-3.4]), TPMT*3C (rs1142345) (1.9%[1.1-2.6]), TPMT*3B (rs1800460) (0.2%[0-0.5]), CYP3A5*6 (rs10264272) (0.2%[0-0.4]) and CYP3A4*18 (rs28371759) (0.1%[0-0.2]). The SLC19A1 (rs1051266), NUD15*3 (rs116855232), CYP2C9*3 (rs1057910), FCGR3A (rs396991), and ITPA (rs1127354) showed significantly higher frequencies in Sri Lankans compared to many other populations, exceptions include FCGR3A in Ashkenazi-Jewish and ITPA in East-Asians. Conversely, MTHFR (rs1801133), TPMT*3B (rs1800460), and CYP2C9*2 (rs1799853) were significantly less prevalent among Sri Lankans than in many other populations. Sri Lankans exhibited lower prevalence of TPMT*3C (rs1142345) compared to European-non-Finnish, Latino-Americans, and African/African-Americans; CYP3A4*18 (rs28371759) compared to East-Asians; and CYP3A5*6 (rs10264272) compared to African/African-Americans and Latino-Americans. CONCLUSION: Sri Lankans exhibit higher frequencies in variants reducing methotrexate efficacy (SLC19A1), increasing azathioprine myelotoxicity (NUDT15), and lower frequencies in variants linked to increased azathioprine toxicity (TPMT*3B, TPMT*3C), reduced tacrolimus efficacy (CYP3A4*18), and methotrexate toxicity risk (MTHFR). Beneficial variants enhancing rituximab efficacy (FCGR3A) are more prevalent, while those reducing tacrolimus dosage (CYP3A5*6) are less common. This highlights need for targeted medication strategies to improve treatment outcomes.
Asunto(s)
Frecuencia de los Genes , Factores Inmunológicos , Variantes Farmacogenómicas , Receptores de IgG , Femenino , Humanos , Masculino , Citocromo P-450 CYP2C9/genética , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metiltransferasas/genética , Farmacogenética/métodos , Polimorfismo de Nucleótido Simple/genética , Receptores de IgG/genética , Proteína Portadora de Folato Reducido/genética , Sri Lanka , Personas del Sur de AsiaRESUMEN
Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.
Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Animales , Pez Cebra , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Vitaminas , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , AntibacterianosRESUMEN
The chemotherapeutic drug methotrexate inhibits the enzyme dihydrofolate reductase1, which generates tetrahydrofolate, an essential cofactor in nucleotide synthesis2. Depletion of tetrahydrofolate causes cell death by suppressing DNA and RNA production3. Although methotrexate is widely used as an anticancer agent and is the subject of over a thousand ongoing clinical trials4, its high toxicity often leads to the premature termination of its use, which reduces its potential efficacy5. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR-Cas9-based screen6,7. This screen yielded FTCD, which encodes an enzyme-formimidoyltransferase cyclodeaminase-that is required for the catabolism of the amino acid histidine8, a process that has not previously been linked to methotrexate sensitivity. In cultured cancer cells, depletion of several genes in the histidine degradation pathway markedly decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of tetrahydrofolate, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukaemia xenografts to methotrexate. The histidine degradation pathway markedly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.
Asunto(s)
Histidina/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Amoníaco-Liasas/deficiencia , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Femenino , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Glutamato Formimidoiltransferasa/deficiencia , Glutamato Formimidoiltransferasa/genética , Glutamato Formimidoiltransferasa/metabolismo , Histidina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Enzimas Multifuncionales , Nucleótidos/biosíntesis , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolatos/deficiencia , Tetrahidrofolatos/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Asunto(s)
Síndromes de Inmunodeficiencia , Leucovorina , Proteína Portadora de Folato Reducido , Humanos , Ácido Fólico/genética , Ácido Fólico/metabolismo , Leucovorina/uso terapéutico , Leucovorina/metabolismo , Leucocitos Mononucleares/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Transportador de Folato Acoplado a Protón/genética , Transportador de Folato Acoplado a Protón/metabolismo , Proteína Portadora de Folato Reducido/genética , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismoRESUMEN
BACKGROUND: Trisomy 21 (T21) is a genetic alteration characterised by the presence of an extra full or partial human chromosome 21 (Hsa21) leading to Down syndrome (DS), the most common form of intellectual disability (ID). It is broadly agreed that the presence of extra genetic material in T21 gives origin to an altered expression of genes located on Hsa21 leading to DS phenotype. The aim of this study was to analyse T21 and normal control blood cell gene expression profiles obtained by total RNA sequencing (RNA-Seq). RESULTS: The results were elaborated by the TRAM (Transcriptome Mapper) software which generated a differential transcriptome map between human T21 and normal control blood cells providing the gene expression ratios for 17,867 loci. The obtained gene expression profiles were validated through real-time reverse transcription polymerase chain reaction (RT-PCR) assay and compared with previously published data. A post-analysis through transcriptome mapping allowed the identification of the segmental (regional) variation of the expression level across the whole genome (segment-based analysis of expression). Interestingly, the most over-expressed genes encode for interferon-induced proteins, two of them (MX1 and MX2 genes) mapping on Hsa21 (21q22.3). The altered expression of genes involved in mitochondrial translation and energy production also emerged, followed by the altered expression of genes encoding for the folate cycle enzyme, GART, and the folate transporter, SLC19A1. CONCLUSIONS: The alteration of these pathways might be linked and involved in the manifestation of ID in DS.
Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Síndrome de Down/genética , Proteínas de Resistencia a Mixovirus/genética , Fosforribosilglicinamida-Formiltransferasa/genética , Proteína Portadora de Folato Reducido/genética , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Cromosomas Humanos Par 21/genética , Síndrome de Down/epidemiología , Síndrome de Down/patología , Metabolismo Energético/genética , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mitocondrias/genética , Mitocondrias/metabolismo , RNA-Seq , Programas Informáticos , Transcriptoma/genéticaRESUMEN
AIMS: Wernicke-Korsakoff syndrome (WKS) is commonly associated with chronic alcohol misuse, a condition known to have multiple detrimental effects on thiamine metabolism. This study was conducted to identify genetic variants that may contribute to the development of WKS in individuals with alcohol dependence syndrome through alteration of thiamine transport into cells. METHODS: Exome sequencing data from a panel of genes related to alcohol metabolism and thiamine pathways were analysed in a discovery cohort of 29 individuals with WKS to identify possible genetic risk variants associated with its development. Variant frequencies in this discovery cohort were compared with European frequencies in the Genome Aggregation Database browser, and those present at significantly higher frequencies were genotyped in an additional cohort of 87 alcohol-dependent cases with WKS and 197 alcohol-dependent cognitively intact controls. RESULTS: Thirty non-synonymous variants were identified in the discovery cohort and, after filtering, 23 were taken forward and genotyped in the case-control cohort. Of these SLC19A1:rs1051266:G was nominally associated with WKS. SLC19A1 encodes the reduced folate carrier, a major transporter for physiological folate in plasma; rs1051266 is reported to impact folate transport. Thiamine pyrophosphate (TPP) efflux was significantly decreased in HEK293 cells, stably transfected with rs1051266:G, under thiamine deficient conditions when compared with the efflux from cells transfected with rs1051266:A (P = 5.7 × 10-11). CONCLUSION: This study provides evidence for the role of genetic variation in the SLC19A1 gene, which may contribute to the development of WKS in vivo through modulation of TPP transport in cells.
Asunto(s)
Alcoholismo , Síndrome de Korsakoff , Proteína Portadora de Folato Reducido , Deficiencia de Tiamina , Alcoholismo/complicaciones , Etanol , Ácido Fólico , Variación Genética/genética , Células HEK293 , Humanos , Síndrome de Korsakoff/complicaciones , Proteína Portadora de Folato Reducido/genética , Tiamina , Deficiencia de Tiamina/genética , Tiamina Pirofosfato/metabolismoRESUMEN
WHAT IS KNOWN AND OBJECTIVE: Solute Carrier (SLC) transporters are known mediators of drug disposition that facilitate the influx of substrates and various chemotherapeutic agents into cells. Polymorphisms in the SLC19A1, SLCO1B1, and SLCO1B3 gene influence the prognosis in the cancer patients, but little is known about their role in lung cancer in Asians. So, the current study aims to investigate the polymorphisms in SLC19A1, SLCO1B1, and SLCO1B3 genes in Northern Indian lung cancer patients. METHODS: Patients with lung cancer who had a confirmed histology and cytology diagnosis were enrolled in the study. SLC polymorphisms were assessed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) for variations in SLC19A1 (G80 A), SLCO1B1 (A388 G, T521 C), and SLCO1B3 (A1683-5676 G). RESULTS AND DISCUSSION: Our results showed that mutant genotype for SLC19A1 G80 A polymorphism had higher median survival time (MST) compared to wild genotype. ADCC patients with mutant genotype showed better survival compared to wild genotype for SLC19A1 G80 A. SCLC patients G80 A polymorphism showed increased survival in patients with mutant genotype (p = 0.04). In SLCO1B3, A1683-5676 G patients carrying heterozygous alleles and administered with platinum and docetaxel showed inferior survival (p = 0.006). In T521 C variant, patients with carrier genotype had reduced chances of developing anaemia (p = 0.04). Patients with SLC19A1 and SLCO1B3 variants showed lower incidence of thrombocytopenia and nephrotoxicity. WHAT IS NEW AND CONCLUSION: Our findings imply that Solute Carrier gene polymorphisms modulate the overall survival in lung cancer patients undergoing platin-based doublet chemotherapy, also these polymorphisms have a modifying impact on the associated adverse events/toxicity.
Asunto(s)
Neoplasias Pulmonares , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Docetaxel/efectos adversos , Genotipo , Alelos , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/uso terapéutico , Proteína Portadora de Folato Reducido/genéticaRESUMEN
Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis. Nevertheless, MTX resistance is quite a common issue in clinical practice. There are some premises that aryl hydrocarbon receptor (AhR) gene battery may take part in MTX metabolism. In the present retrospective study, we analyzed genes expression of AHR genes battery associated with MTX metabolism in whole blood of RA patients with good and poor response to MTX treatment. Additionally, sequencing, genotyping and bioinformatics analysis of AHR repressor gene (AHRR) c.565C > G (rs2292596) and c.1933G > C (rs34453673) have been performed. Theoretically, both changes may have an impact on H3K36me3 and H3K27me3. Evolutionary analysis revealed that rs2292596 may be possibly damaging. Allele G in rs2292596 and DAS28 seems to be associated with a higher risk of poor response to MTX treatment in RA. RA patients with poor response to MTX treatment revealed upregulated AhR and SLC19A1 mRNA level. Treatment with IL-6 inhibitor may be helpful to overcome the low-dose MTX resistance. Analysis of gene expression revealed possible another cause of poor response to MTX treatment which is different from that observed in the case of acute lymphoblastic leukemia.
Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Metotrexato/uso terapéutico , Receptores de Hidrocarburo de Aril/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Artritis Reumatoide/genética , Resistencia a Medicamentos/genética , Femenino , Genes/genética , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Proteína Portadora de Folato Reducido/genética , Resultado del Tratamiento , Adulto JovenRESUMEN
The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among the 1,191 genes tested on the platform, 12 genes are expressed in the red cell membrane: ABCC1, ABCC4, ABCC5, ABCG2, CFTR, SLC16A1, SLC19A1, SLC29A1, ATP7A, CYP4F3, EPHX1 and FLOT1. These genes represent 5 ATP-binding cassette proteins, 3 solute carrier proteins, 1 ATP transport protein and 3 genes associated with drug metabolism and adverse drug reactions. Only ABCG2 and SLC29A1 encode blood group systems, JR and AUG, respectively. We propose red cells as an ex vivo model system to study the effect of heritable variants in genes encoding the transport proteins on the pharmacokinetics of drugs. Altered pharmacodynamics in red cells could also cause adverse reactions, such as haemolysis, hitherto unexplained by other mechanisms.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antígenos de Grupos Sanguíneos/genética , Eritrocitos/metabolismo , Proteínas de Transporte de Membrana/genética , Farmacogenética , Polimorfismo Genético , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , ATPasas Transportadoras de Cobre/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Familia 4 del Citocromo P450/genética , Epóxido Hidrolasas/genética , Tranportador Equilibrativo 1 de Nucleósido/genética , Humanos , Proteínas de la Membrana/genética , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas de Neoplasias/genética , Proteína Portadora de Folato Reducido/genética , Simportadores/genéticaRESUMEN
Although it is generally recognized that genetic and environmental factors are associated with the risk of congenital heart disease (CHD), the mechanism remains largely uncertain. This study aimed to investigate the association of maternal folate use, the time when folate use was started, and polymorphisms of the reduced folate carrier (RFC1) gene with the risk of CHD in offspring of Chinese descent, which can help provide new insight into the etiology of folate-related birth defects. A case-control study of 683 mothers of CHD patients and 740 mothers of healthy children was performed. The present study showed that mothers who did not use folate were at a significantly increased risk of CHD (OR=2.04; 95% CI: 1.42-2.93). When compared with those who started using folate prior to conception, mothers who started using folate from the first trimester of pregnancy (OR=1.90; 95% CI: 1.43-2.54) or from the second trimester of pregnancy (OR=8.92; 95% CI: 4.20-18.97) had a significantly higher risk of CHD. Maternal RFC1 gene polymorphisms at rs2236484 (AG vs AA: OR=1.79 [95% CI: 1.33-2.39]; GG vs AA: OR=1.64 [95% CI: 1.15-2.35]) and rs2330183 (CT vs CC: OR=1.54 [95% CI: 1.14-2.09]) were also significantly associated with CHD risk. Additionally, the risk of CHD was significantly decreased among mothers who had variant genotypes but used folate when compared with those who had variant genotypes and did not use folate.Conclusion: In those of Chinese descent, maternal folate use and the time when use started are significantly associated with the risk of CHD in offspring. Furthermore, maternal folate supplementation may help to offset some of the risks of CHD in offspring due to maternal RFC1 genetic variants. What is Known: ⢠Folate use could help prevent CHD, but the relationship between the time when folate use is started and CHD has not received sufficient attention. ⢠Studies have assessed the associations of folate metabolism-related genes with CHD, but genes involved in cellular transportation of folate, such as the RFC1 gene, have not garnered enough attention. What is New: ⢠In those of Chinese descents, the time when folate use is started is significantly associated with the risk of CHD in offspring. ⢠Maternal RFC1 polymorphisms were significantly associated with the risk of CHD. ⢠Folate supplementation may help to offset some risks of CHD due to RFC1 genetic variants.
Asunto(s)
Ácido Fólico , Cardiopatías Congénitas , Proteína Portadora de Folato Reducido/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Humanos , Madres , Polimorfismo Genético , Factores de RiesgoRESUMEN
BACKGROUND We performed the present study to better elucidate the correlation of reduced folate carrier-1 (RFC1) A80G (rs1051266) polymorphism with the risk of congenital heart disease (CHD). MATERIAL AND METHODS According to the designed search strategy, a systematic literature search was performed through the PubMed, Cochrane Library, Web of Science, EMBASE, CNKI, VIP, and Wan Fang databases to collect published case-control studies on the correlation between RFC1 A80G polymorphism and CHD. All relevant studies up to October 1, 2019 were identified. The odds ratio (OR) and 95% confidence interval (CI) of the genotype distribution were used as the effect indicators. RESULTS A total of 6 eligible studies was finally included in our meta-analysis, including 724 children with CHD, 760 healthy children, 258 mothers of the children with CHD, and 334 mothers of healthy control children. The meta-analysis revealed that for fetal analysis, only in the heterozygous model (GA vs GG, OR=1.36, 95% CI [1.06, 1.75], P=0.02) was RFC1 A80G polymorphism associated with risk of CHD. In maternal analysis, 3 genetic models of RFC1 A80G polymorphism increased the risk of CHD: the allelic model (A vs G, OR=1.36, 95% CI [1.07, 1.71], P=0.01), the homozygote model (AA vs GG, OR=2.99, 95%CI [1.06, 8.41], P=0.04), and the dominance model (GA+AA vs GG, OR=1.53, 95%CI [1.08, 2.16], P=0.02). CONCLUSIONS The maternal RFC1 A80G polymorphism has a strong correlation with CHD. Compared with the G allele, the A allele increases the risk of CHD by 0.36-fold.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple/genética , Proteína Portadora de Folato Reducido/genética , Alelos , Estudios de Casos y Controles , Genotipo , Humanos , Factores de RiesgoRESUMEN
OBJECTIVE: To study the association between maternal reduced folate carrier (RFC) gene polymorphisms and congenital heart disease (CHD) in offspring. METHODS: A hospital-based case-control study was conducted. The mothers of 683 infants with CHD who attended the Department of Cardiothoracic Surgery, Hunan Children's Hospital, from November 2017 to March 2020 were enrolled as the case group. The mothers of 740 healthy infants without any deformity who attended the hospital during the same period of time were enrolled as the control group. A questionnaire survey was performed to collect the exposure data of subjects. Venous blood samples of 5 mL were collected from the mothers for genetic polymorphism detection. A multivariate logistic regression analysis was used to evaluate the association of RFC gene polymorphisms and their haplotypes with CHD. A generalized multifactor dimensionality reduction method was used to analyze gene-gene interactions. RESULTS: After control for confounding factors, the multivariate logistic regression analysis showed that maternal RFC gene polymorphisms at rs2236484 (AG vs AA:OR=1.91, 95%CI:1.45-2.51; GG vs AA: OR=1.96, 95%CI:1.40-2.75) and rs2330183 (CT vs CC:OR=1.39, 95%CI:1.06-1.83) were significantly associated with the risk of CHD in offspring. The haplotypes of G-G (OR=1.21, 95%CI:1.03-1.41) and T-G (OR=1.25, 95%CI:1.07-1.46) in mothers significantly increased the risk of CHD in offspring. The interaction analysis showed significant gene-gene interactions between different SNPs of the RFC gene in CHD (P < 0.05). CONCLUSIONS: Maternal RFC gene polymorphisms and interactions between different SNPs are significantly associated with the risk of CHD in offspring.
Asunto(s)
Cardiopatías Congénitas , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Niño , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Cardiopatías Congénitas/genética , Humanos , Lactante , Proteína Portadora de Folato Reducido/genética , Factores de RiesgoRESUMEN
Approximately 10% of the mouse genome is composed of endogenous retroviruses belonging to different families. In contrast to the situation in the human genome, several of these families correspond to recent, still-infectious elements capable of encoding complete viral particles. The mouse GLN endogenous retrovirus is one of these active families. We previously identified one fully functional provirus from the sequenced genome of the C57BL/6 mouse strain. The GLN envelope protein gives the infectious viral particles an ecotropic host range, and we had demonstrated that the receptor was neither CAT1 nor SMIT1, the two previously identified receptors for mouse ecotropic retroviral envelope proteins. In this study, we have identified SLC19A1, the reduced folate carrier, as the cellular protein used as a receptor by the GLN retrovirus. The ecotropic tropism exhibited by this envelope is due to the presence or absence of an N-linked glycosylation site in the first extracellular loop as well as the specific amino acid sequence of the extracellular domains of the receptor. Like all the other retroviral envelope proteins from the gammaretrovirus genus whose receptors have been identified, the GLN envelope protein uses a member of the solute carrier superfamily as a receptor.IMPORTANCE Endogenous retroviruses are genomic traces of past infections present in all vertebrates. Most of these elements degenerate over time and become nonfunctional, but the mouse genome still contains several families with full infection abilities. The GLN retrovirus is one of them, and its members encode particles that are able to infect only mouse cells. Here, we identified the cellular protein used as a receptor by GLN for cell entry. It is SLC19A1, the reduced folate carrier. We show that GLN infection is limited to mouse cells due to both a mutation in the mouse gene preventing the glycosylation of SLC19A1 and also other residues conserved within the rat but not in the hamster and human proteins. Like all other gammaretroviruses whose receptors have been identified, GLN uses a member of the solute carrier superfamily for cell entry, highlighting the role of these proteins for retroviral infection in mammals.
Asunto(s)
Gammaretrovirus/metabolismo , Productos del Gen env/genética , Receptores Virales/genética , Proteína Portadora de Folato Reducido/genética , Proteínas del Envoltorio Viral/genética , Acoplamiento Viral , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Gammaretrovirus/genética , Genoma/genética , Glicosilación , Células HEK293 , Especificidad del Huésped , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Proteína Portadora de Folato Reducido/metabolismo , Infecciones por Retroviridae/virologíaRESUMEN
Feline leukemia virus (FeLV) is horizontally transmitted among cats and causes a variety of hematopoietic disorders. Five subgroups of FeLV, A to D and T, each with distinct receptor usages, have been described. Recently, we identified a new FeLV Env (TG35-2) gene from a pseudotyped virus that does not belong to any known subgroup. FeLV-A is the primary virus from which other subgroups have emerged via mutation or recombination of the subgroup A env gene. Retrovirus entry into cells is mediated by the interaction of envelope protein (Env) with specific cell surface receptors. Here, phenotypic screening of a human/hamster radiation hybrid panel identified SLC19A1, a feline reduced folate carrier (RFC) and potential receptor for TG35-2-phenotypic virus. RFC is a multipass transmembrane protein. Feline and human RFC cDNAs conferred susceptibility to TG35-2-pseudotyped virus when introduced into nonpermissive cells but did not render these cells permissive to other FeLV subgroups or feline endogenous retrovirus. Moreover, human cells with genomic deletion of RFC were nonpermissive for TG35-2-pseudotyped virus infection, but the introduction of feline and human cDNAs rendered them permissive. Mutation analysis of FeLV Env demonstrated that amino acid substitutions within variable region A altered the specificity of the Env-receptor interaction. We isolated and reconstructed the full-length infectious TG35-2-phenotypic provirus from a naturally FeLV-infected cat, from which the FeLV Env (TG35-2) gene was previously isolated, and compared the replication of the virus in hematopoietic cell lines with that of FeLV-A 61E by measuring the viral RNA copy numbers. These results provide a tool for further investigation of FeLV infectious disease.IMPORTANCE Feline leukemia virus (FeLV) is a member of the genus Gammaretrovirus, which causes malignant diseases in cats. The most prevalent FeLV among cats is FeLV subgroup A (FeLV-A), and specific binding of FeLV-A Env to its viral receptor, thiamine transporter feTHTR1, is the first step of infection. In infected cats, novel variants of FeLV with altered receptor specificity for viral entry have emerged by mutation or recombination of the env gene. A novel FeLV variant arose from a subtle mutation of FeLV-A Env, which altered the specific interaction of the virus with its receptor. RFC, a folate transporter, is a potential receptor for the novel FeLV variant. The perturbation of specific retrovirus-receptor interactions under selective pressure by the host results in the emergence of novel viruses.
Asunto(s)
Genes env/genética , Virus de la Leucemia Felina/genética , Receptores Virales/genética , Proteína Portadora de Folato Reducido/genética , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Secuencia de Aminoácidos , Animales , Gatos , Línea Celular , Cricetinae , Retrovirus Endógenos/metabolismo , Productos del Gen env/genética , Células HeLa , Humanos , Virus de la Leucemia Felina/metabolismo , Leucemia Felina/virología , Filogenia , Provirus , ARN Viral/genética , Receptores Virales/metabolismo , Proteína Portadora de Folato Reducido/clasificación , Proteína Portadora de Folato Reducido/metabolismo , Alineación de Secuencia , Replicación ViralRESUMEN
Multiple pharmacogenetic studies investigated the effectiveness of methotrexate. However, due to the use of nonvalidated outcomes, lack of validation or conflicting results it remains unclear if genetic markers can help to predict response to MTX treatment. Therefore, a systematic review was performed. PubMed was searched for articles reporting potential pharmacogenetic biomarkers associated (p < 0.05) with MTX efficacy using the validated endpoints DAS(28), EULAR, or ACR response criteria. The PICO method was used for study selection, and PRISMA guidelines to prepare the report. Thirty-five studies met the inclusion criteria, providing 39 potential genetic biomarkers in 19 genes. After Bonferroni correction, six genetic biomarkers were associated with the efficacy of MTX: ATIC rs7563206; SLC19A1 rs1051266; DHFR rs836788; TYMS rs2244500, rs2847153, and rs3786362 in at least one study. Only SLC19A1 rs1051266 was replicated in an independent cohort and promising for predicting methotrexate efficacy.
Asunto(s)
Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Metotrexato/farmacología , Polimorfismo de Nucleótido Simple , Proteína Portadora de Folato Reducido/genética , Antirreumáticos/uso terapéutico , Artritis Reumatoide/genética , Marcadores Genéticos , Humanos , Metotrexato/uso terapéutico , Farmacogenética , Resultado del TratamientoRESUMEN
The occurrence and development of prostate cancer (PCa) is complex, and the related mechanism is not fully understood. Current studies have found that extracellular vesicles (EVs) and circular RNAs (circRNAs) have important functions in various tumours and other diseases. In this study, the detection of circRNAs in PCa showed that circ_SLC19A1 was increased in PCa cells and their secreted EVs. EVs with high expression of circ_SLC19A1 could be taken up by PCa cells, which promoted cell proliferation and invasion. The sequence of circ_SLC19A1 contained multiple binding sites for miR-497, and circ_SLC19A1 could bind directly to miR-497 in cells. The expression of miR-497 was downregulated in PCa cells, while the expression of its target gene septin 2 (SEPT2) was upregulated significantly. Transfection of circ_SLC19A1 small interfering RNA (siRNA) or miR-497 mimics could significantly inhibit the expression of SEPT2 and the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). After co-transfection of circ_SLC19A1 siRNA and miR-497 inhibitors or SEPT2 overexpression vector, the expression of SEPT2 and ERK1/2 phosphorylation levels showed no significant changes. Similar results were obtained with co-transfection of miR-497 mimics and the SEPT2 overexpression vector. Therefore, cancer cells can regulate the expression of SEPT2 through miR-497 by secreting EVs with high expression of circ_SLC19A1, thus affecting the activation of the downstream ERK1/2 pathway and ultimately regulating PCa cell growth and invasion. Therefore, EV-derived circ_SLC19A1 plays an important regulatory role in PCa and may be an important target for PCa prevention and treatment.