Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985564

RESUMEN

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , ADN Viral/química , Modelos Químicos , Modelos Moleculares , Complejos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura
2.
Mol Cell ; 80(6): 971-979.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33248026

RESUMEN

CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Evolución Molecular , Proteínas Asociadas a CRISPR/inmunología , Células Procariotas/inmunología , Células Procariotas/virología , Biosíntesis de Proteínas , Virus/inmunología
3.
Mol Cell ; 74(1): 132-142.e5, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30872121

RESUMEN

Bacteria and archaea have evolved sophisticated adaptive immune systems that rely on CRISPR RNA (crRNA)-guided detection and nuclease-mediated elimination of invading nucleic acids. Here, we present the cryo-electron microscopy (cryo-EM) structure of the type I-F crRNA-guided surveillance complex (Csy complex) from Pseudomonas aeruginosa bound to a double-stranded DNA target. Comparison of this structure to previously determined structures of this complex reveals a ∼180-degree rotation of the C-terminal helical bundle on the "large" Cas8f subunit. We show that the double-stranded DNA (dsDNA)-induced conformational change in Cas8f exposes a Cas2/3 "nuclease recruitment helix" that is structurally homologous to a virally encoded anti-CRISPR protein (AcrIF3). Structural homology between Cas8f and AcrIF3 suggests that AcrIF3 is a mimic of the Cas8f nuclease recruitment helix.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Imitación Molecular , Pseudomonas aeruginosa/enzimología , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Virales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Microscopía por Crioelectrón , ADN Bacteriano/química , ADN Bacteriano/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
4.
Mol Cell ; 73(2): 264-277.e5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503773

RESUMEN

Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Microscopía por Crioelectrón , Desoxirribonucleasas/genética , Desoxirribonucleasas/inmunología , Desoxirribonucleasas/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/inmunología , ARN Bacteriano/ultraestructura , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/ultraestructura , Relación Estructura-Actividad , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/inmunología
5.
Mol Cell ; 73(2): 278-290.e4, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503774

RESUMEN

Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ARN Bacteriano/inmunología , Autotolerancia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Cinética , Microscopía Fluorescente , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transducción de Señal , Imagen Individual de Molécula/métodos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus epidermidis/enzimología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/inmunología , Relación Estructura-Actividad
6.
Mol Cell ; 70(1): 48-59.e5, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29602742

RESUMEN

CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Escherichia coli/genética , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/inmunología , Proteína 9 Asociada a CRISPR/aislamiento & purificación , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/inmunología , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Complejos Multienzimáticos , Conformación de Ácido Nucleico , Conformación Proteica , Subunidades de Proteína , Especificidad por Sustrato
7.
Mol Cell ; 65(1): 168-175, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017588

RESUMEN

CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application.


Asunto(s)
Inmunidad Adaptativa , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Intergénico/genética , ADN Viral/genética , Endonucleasas/genética , Mutación , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/metabolismo , ADN Intergénico/inmunología , ADN Intergénico/metabolismo , ADN Viral/inmunología , ADN Viral/metabolismo , Endonucleasas/inmunología , Endonucleasas/metabolismo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Fenotipo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Especificidad por Sustrato , Factores de Tiempo
8.
Mol Cell ; 64(3): 616-623, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27618488

RESUMEN

CRISPR-Cas systems defend prokaryotes against viruses and plasmids. Short DNA segments of the invader, known as spacers, are stored in the CRISPR array as immunological memories. New spacers are added invariably to the 5' end of the array; therefore, the first spacer matches the latest foreign threat. Whether this highly polarized order of spacer insertion influences CRISPR-Cas immunity has not been explored. Here we show that a conserved sequence located immediately upstream of the CRISPR array specifies the site of new spacer integration. Mutation of this sequence results in erroneous incorporation of new spacers into the middle of the array. We show that spacers added through polarized acquisition give rise to more robust CRISPR-Cas immunity than spacers added to the middle of the array. This study demonstrates that the CRISPR-Cas system specifies the site of spacer integration to optimize the immune response against the most immediate threat to the host.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Endonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Regiones no Traducidas 5' , Proteínas Bacterianas/metabolismo , Bacteriófagos/inmunología , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/inmunología , Cromosomas Bacterianos/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Sitios Genéticos , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/virología
9.
Mol Cell ; 64(6): 1102-1108, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27867010

RESUMEN

Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/inmunología , Endodesoxirribonucleasas/genética , Regulación Bacteriana de la Expresión Génica/inmunología , Percepción de Quorum/genética , Serratia/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/inmunología , Percepción de Quorum/efectos de los fármacos , Percepción de Quorum/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Serratia/efectos de los fármacos , Serratia/inmunología
10.
Mol Cell ; 64(4): 826-834, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27871367

RESUMEN

During type I-E CRISPR-Cas immunity, the Cascade surveillance complex utilizes CRISPR-derived RNAs to target complementary invasive DNA for destruction. When invader mutation blocks this interference activity, Cascade instead triggers rapid primed adaptation against the invader. The molecular basis for this dual Cascade activity is poorly understood. Here we show that the conformation of the Cse1 subunit controls Cascade activity. Using FRET, we find that Cse1 exists in a dynamic equilibrium between "open" and "closed" conformations, and the extent to which the open conformation is favored directly correlates with the attenuation of interference and relative increase in priming activity upon target mutation. Additionally, the Cse1 L1 motif modulates Cascade activity by stabilizing the closed conformation. L1 mutations promote the open conformation and switch immune response from interference to priming. Our results demonstrate that Cascade conformation controls the functional outcome of target recognition, enabling tunable CRISPR immune response to combat invader evolution.


Asunto(s)
Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Escherichia coli K12/inmunología , Proteínas de Escherichia coli/inmunología , Regulación Bacteriana de la Expresión Génica , Plásmidos/metabolismo , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Carbocianinas/química , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/inmunología , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Mutación , Plásmidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Coloración y Etiquetado/métodos
11.
Mol Cell ; 62(6): 824-833, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27211867

RESUMEN

Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition.


Asunto(s)
Inmunidad Adaptativa , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Bacteriano/inmunología , Endodesoxirribonucleasas/inmunología , Endonucleasas/inmunología , Proteínas de Escherichia coli/inmunología , Escherichia coli/inmunología , Memoria Inmunológica , Factores de Integración del Huésped/inmunología , Sitios de Unión , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo
12.
Mol Cell ; 62(2): 295-306, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105119

RESUMEN

Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Streptococcus thermophilus/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , ADN Bacteriano/genética , ADN Bacteriano/inmunología , ADN de Cadena Simple/genética , ADN de Cadena Simple/inmunología , ADN Viral/genética , ADN Viral/inmunología , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/virología , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , División del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Viral/genética , ARN Viral/inmunología , ADN Polimerasa Dirigida por ARN/genética , Streptococcus thermophilus/genética , Streptococcus thermophilus/inmunología , Streptococcus thermophilus/virología , Factores de Tiempo
13.
Mol Cell ; 58(1): 60-70, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25752578

RESUMEN

Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Viral/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/inmunología , Secuencia de Bases , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/metabolismo , Colifagos/química , Colifagos/genética , ADN Viral/genética , Escherichia coli/inmunología , Escherichia coli/virología , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Datos de Secuencia Molecular , Mutación , Unión Proteica
14.
Mol Cell ; 54(2): 234-44, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766887

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Asociadas a CRISPR/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Células Procariotas/inmunología , Bacteriófagos/inmunología , ADN Bacteriano/química , Secuencias Invertidas Repetidas , Células Procariotas/virología
15.
Nucleic Acids Res ; 48(21): 12074-12084, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33219687

RESUMEN

CRISPR-Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR-Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100 000 bacterial genomes. We found STS in all CRISPR-Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR-Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR-Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects as mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages.


Asunto(s)
Bacterias/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Genoma Bacteriano , Profagos/genética , Autoinmunidad/genética , Bacterias/inmunología , Bacterias/virología , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/inmunología , Proteínas Asociadas a CRISPR/inmunología , Mapeo Cromosómico/estadística & datos numéricos , Programas Informáticos
16.
Nature ; 519(7542): 193-8, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25707795

RESUMEN

Bacteria and archaea insert spacer sequences acquired from foreign DNAs into CRISPR loci to generate immunological memory. The Escherichia coli Cas1-Cas2 complex mediates spacer acquisition in vivo, but the molecular mechanism of this process is unknown. Here we show that the purified Cas1-Cas2 complex integrates oligonucleotide DNA substrates into acceptor DNA to yield products similar to those generated by retroviral integrases and transposases. Cas1 is the catalytic subunit and Cas2 substantially increases integration activity. Protospacer DNA with free 3'-OH ends and supercoiled target DNA are required, and integration occurs preferentially at the ends of CRISPR repeats and at sequences adjacent to cruciform structures abutting AT-rich regions, similar to the CRISPR leader sequence. Our results demonstrate the Cas1-Cas2 complex to be the minimal machinery that catalyses spacer DNA acquisition and explain the significance of CRISPR repeats in providing sequence and structural specificity for Cas1-Cas2-mediated adaptive immunity.


Asunto(s)
Inmunidad Adaptativa , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/inmunología , Integrasas/metabolismo , Secuencia Rica en At/genética , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , ADN/química , ADN/genética , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Conformación de Ácido Nucleico , Especificidad por Sustrato , Transposasas/metabolismo
17.
Nature ; 514(7524): 633-7, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25174707

RESUMEN

A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter. Prokaryotic CRISPR-Cas immune systems defend against phage infection by using Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome. Temperate phages include viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host. However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity both to lytic and lysogenic infection by temperate phages-compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of 'tolerance to non-self' to the prokaryotic branch of adaptive immunity.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/virología , Transcripción Genética , Bacteriófagos/inmunología , Bacteriófagos/patogenicidad , Secuencia de Bases , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Viral/genética , ADN Viral/inmunología , ADN Viral/metabolismo , Tolerancia Inmunológica , Lisogenia/genética , Lisogenia/inmunología , Datos de Secuencia Molecular , Provirus/genética , Provirus/inmunología , Provirus/patogenicidad , Provirus/fisiología , Staphylococcus epidermidis/inmunología
18.
Nucleic Acids Res ; 45(1): 367-381, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899566

RESUMEN

CRISPR-Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The universally conserved Cas1 and Cas2 form an integration complex that is known to mediate the protospacer invasion into the CRISPR array. However, the mechanism by which this protospacer fragment gets integrated in a directional fashion into the leader proximal end is elusive. Here, we employ CRISPR/dCas9 mediated immunoprecipitation and genetic analysis to identify Integration Host Factor (IHF) as an indispensable accessory factor for spacer acquisition in Escherichia coli Further, we show that the leader region abutting the first CRISPR repeat localizes IHF and Cas1-2 complex. IHF binding to the leader region induces bending by about 120° that in turn engenders the regeneration of the cognate binding site for protospacer bound Cas1-2 complex and brings it in proximity with the first CRISPR repeat. This appears to guide Cas1-2 complex to orient the protospacer invasion towards the leader-repeat junction thus driving the integration in a polarized fashion.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Factores de Integración del Huésped/genética , Secuencia de Bases , Sitios de Unión , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , ADN Bacteriano/química , ADN Bacteriano/inmunología , Endodesoxirribonucleasas/inmunología , Endonucleasas/inmunología , Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Factores de Integración del Huésped/inmunología , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína/genética , Estructura Secundaria de Proteína
19.
Nucleic Acids Res ; 45(15): 8978-8992, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911114

RESUMEN

CRISPR-Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair genes during spacer acquisition remained poorly understood. Here, we demonstrated that de novo spacer acquisition required Csa1, Cas1, Cas2 and Cas4 proteins of the Sulfolobus Type I-A system. Disruption of genes implicated in crRNA maturation or DNA interference led to a significant accumulation of acquired spacers, mainly derived from host genomic DNA. Transcriptome and proteome analyses showed that Csa3a activated expression of adaptation cas genes, CRISPR RNAs, and DNA repair genes, including herA helicase, nurA nuclease and DNA polymerase II genes. Importantly, Csa3a specifically bound the promoters of the above DNA repair genes, suggesting that they were directly activated by Csa3a for adaptation. The Csa3a regulator also specifically bound to the leader sequence to activate CRISPR transcription in vivo. Our data indicated that the Csa3a regulator couples transcriptional activation of the CRISPR-Cas system and DNA repair genes for spacer adaptation and efficient interference of invading genetic elements.


Asunto(s)
Proteínas Arqueales/genética , Sistemas CRISPR-Cas , Reparación del ADN , ADN de Archaea/genética , Regulación de la Expresión Génica Arqueal , Sulfolobus/genética , Activación Transcripcional , Proteínas Arqueales/inmunología , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Helicasas/genética , ADN Helicasas/inmunología , ADN Polimerasa II/genética , ADN Polimerasa II/inmunología , ADN de Archaea/inmunología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/inmunología , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Regiones Promotoras Genéticas , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Sulfolobus/inmunología
20.
RNA ; 22(2): 216-24, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26647461

RESUMEN

Prokaryotes are frequently exposed to potentially harmful invasive nucleic acids from phages, plasmids, and transposons. One method of defense is the CRISPR-Cas adaptive immune system. Diverse CRISPR-Cas systems form distinct ribonucleoprotein effector complexes that target and cleave invasive nucleic acids to provide immunity. The Type III-B Cmr effector complex has been found to target the RNA and DNA of the invader in the various bacterial and archaeal organisms where it has been characterized. Interestingly, the gene encoding the Csx1 protein is frequently located in close proximity to the Cmr1-6 genes in many genomes, implicating a role for Csx1 in Cmr function. However, evidence suggests that Csx1 is not a stably associated component of the Cmr effector complex, but is necessary for DNA silencing by the Cmr system in Sulfolobus islandicus. To investigate the function of the Csx1 protein, we characterized the activity of recombinant Pyrococcus furiosus Csx1 against various nucleic acid substrates. We show that Csx1 is a metal-independent, endoribonuclease that acts selectively on single-stranded RNA and cleaves specifically after adenosines. The RNA cleavage activity of Csx1 is dependent upon a conserved HEPN motif located within the C-terminal domain of the protein. This motif is also key for activity in other known ribonucleases. Collectively, the findings indicate that invader silencing by Type III-B CRISPR-Cas systems relies both on RNA and DNA nuclease activities from the Cmr effector complex as well as on the affiliated, trans-acting Csx1 endoribonuclease.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Endorribonucleasas/química , Pyrococcus furiosus/genética , ARN de Archaea/química , Adenosina/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Endorribonucleasas/genética , Endorribonucleasas/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus furiosus/inmunología , ARN de Archaea/genética , ARN de Archaea/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Sulfolobus/genética , Sulfolobus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA