Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2404829121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39298473

RESUMEN

Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's mechanical properties are sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events under physiological conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 exhibits a point mutation, V507D, associated with nonsyndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than for the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.


Asunto(s)
Proteínas Relacionadas con las Cadherinas , Cadherinas , Humanos , Proteínas Relacionadas con las Cadherinas/química , Proteínas Relacionadas con las Cadherinas/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Cadherinas/química , Calcio/metabolismo , Oído Interno/metabolismo , Mecanotransducción Celular , Mutación , Pinzas Ópticas , Mutación Puntual , Multimerización de Proteína , Precursores de Proteínas , Desplegamiento Proteico
2.
PLoS Biol ; 19(12): e3001463, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871294

RESUMEN

Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/ultraestructura , Microvellosidades/patología , Animales , Células CACO-2 , Proteínas Relacionadas con las Cadherinas/metabolismo , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Comunicación Celular , Línea Celular , Enterocitos/metabolismo , Enterocitos/fisiología , Células Epiteliales/metabolismo , Humanos , Intestino Delgado/patología , Intestino Delgado/fisiología , Ratones , Microvellosidades/fisiología , Especificidad de la Especie
3.
Circulation ; 145(16): 1218-1233, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35114812

RESUMEN

BACKGROUND: The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood. Although long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. METHODS: RNA sequencing was applied to hearts from mice after 8 weeks of voluntary exercise-induced physiological hypertrophy and cardiomyogenesis or transverse aortic constriction for 2 or 8 weeks to induce pathological hypertrophy or heart failure. The top lncRNA candidate was overexpressed in hearts with adeno-associated virus vectors and inhibited with antisense locked nucleic acid-GapmeRs to examine its function. Downstream effectors were identified through promoter analyses and binding assays. The functional roles of a novel downstream effector, dachsous cadherin-related 2 (DCHS2), were examined through transgenic overexpression in zebrafish and cardiac-specific deletion in Cas9-knockin mice. RESULTS: We identified exercise-regulated cardiac lncRNAs, called lncExACTs. lncExACT1 was evolutionarily conserved and decreased in exercised hearts but increased in human and experimental heart failure. Cardiac lncExACT1 overexpression caused pathological hypertrophy and heart failure; lncExACT1 inhibition induced physiological hypertrophy and cardiomyogenesis, protecting against cardiac fibrosis and dysfunction. lncExACT1 functioned by regulating microRNA-222, calcineurin signaling, and Hippo/Yap1 signaling through DCHS2. Cardiomyocyte DCHS2 overexpression in zebrafish induced pathological hypertrophy and impaired cardiac regeneration, promoting scarring after injury. In contrast, murine DCHS2 deletion induced physiological hypertrophy and promoted cardiomyogenesis. CONCLUSIONS: These studies identify lncExACT1-DCHS2 as a novel pathway regulating cardiac hypertrophy and cardiomyogenesis. lncExACT1-DCHS2 acts as a master switch toggling the heart between physiological and pathological growth to determine functional outcomes, providing a potentially tractable therapeutic target for harnessing the beneficial effects of exercise.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/metabolismo , Insuficiencia Cardíaca , MicroARNs , ARN Largo no Codificante , Animales , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pez Cebra/genética
4.
Proc Natl Acad Sci U S A ; 114(30): 7765-7774, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28705869

RESUMEN

Many genetic forms of congenital deafness affect the sound reception antenna of cochlear sensory cells, the hair bundle. The resulting sensory deprivation jeopardizes auditory cortex (AC) maturation. Early prosthetic intervention should revive this process. Nevertheless, this view assumes that no intrinsic AC deficits coexist with the cochlear ones, a possibility as yet unexplored. We show here that many GABAergic interneurons, from their generation in the medial ganglionic eminence up to their settlement in the AC, express two cadherin-related (cdhr) proteins, cdhr23 and cdhr15, that form the hair bundle tip links gating the mechanoelectrical transduction channels. Mutant mice lacking either protein showed a major decrease in the number of parvalbumin interneurons specifically in the AC, and displayed audiogenic reflex seizures. Cdhr15- and Cdhr23-expressing interneuron precursors in Cdhr23-/- and Cdhr15-/- mouse embryos, respectively, failed to enter the embryonic cortex and were scattered throughout the subpallium, consistent with the cell polarity abnormalities we observed in vitro. In the absence of adhesion G protein-coupled receptor V1 (adgrv1), another hair bundle link protein, the entry of Cdhr23- and Cdhr15-expressing interneuron precursors into the embryonic cortex was also impaired. Our results demonstrate that a population of newborn interneurons is endowed with specific cdhr proteins necessary for these cells to reach the developing AC. We suggest that an "early adhesion code" targets populations of interneuron precursors to restricted neocortical regions belonging to the same functional area. These findings open up new perspectives for auditory rehabilitation and cortical therapies in patients.


Asunto(s)
Corteza Auditiva/embriología , Proteínas Relacionadas con las Cadherinas/metabolismo , Cadherinas/metabolismo , Interneuronas/fisiología , Precursores de Proteínas/metabolismo , Animales , Corteza Auditiva/metabolismo , Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Polaridad Celular , Femenino , Macaca , Masculino , Mecanotransducción Celular , Ratones , Precursores de Proteínas/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Nat Commun ; 14(1): 2400, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100771

RESUMEN

Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.


Asunto(s)
Oído Interno , Síndromes de Usher , Animales , Ratones , Cadherinas/metabolismo , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Audición/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Proteínas Relacionadas con las Cadherinas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-36141853

RESUMEN

Cadherin 12 (CDH 12) can play a role in the pathogenesis of endometriosis. The aim of this study was to compare the levels of cadherin 12 in the peritoneal fluid between women with and without endometriosis. This was a multicenter cross-sectional study. Eighty-two patients undergoing laparoscopic procedures were enrolled in the study. Cadherin 12 concentrations were determined using the enzyme-linked immunosorbent assay. The level of statistical significance was set at p < 0.05. No differences in cadherin 12 concentrations between patients with and without endometriosis were observed (p = 0.4). Subgroup analyses showed that CDH 12 concentrations were significantly higher in patients with infertility or primary infertility and endometriosis in comparison with patients without endometriosis and without infertility or primary infertility (p = 0.02) and also higher in patients with stage I or II endometriosis and infertility or primary infertility than in patients without endometriosis and infertility or primary infertility (p = 0.03, p = 0.048, respectively). In total, CDH 12 levels were significantly higher in patients diagnosed with infertility or primary infertility (p = 0.0092, p = 0.009, respectively) than in fertile women. Cadherin 12 can possibly play a role in the pathogenesis of infertility, both in women with and without endometriosis.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/metabolismo , Endometriosis , Infertilidad Femenina , Líquido Ascítico/patología , Cadherinas , Estudios Transversales , Endometriosis/complicaciones , Femenino , Humanos , Infertilidad Femenina/etiología
7.
J Comp Neurol ; 529(10): 2407-2417, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33381867

RESUMEN

Clustered protocadherins (Pcdhs) are a family of ~60 cadherin-like proteins (divided into subclasses α, ß, and γ) that regulate dendrite morphology and neural connectivity. Their expression is controlled through epigenetic regulation at a gene cluster encoding the molecules. During neural development, Pcdhs mediate dendrite self-avoidance in some neuronal types through an uncharacterized anti-adhesive mechanism. Pcdhs are also important for dendritic complexity in cortical neurons likely through a pro-adhesive mechanism. Pcdhs have also been postulated to participate in synaptogenesis and connectivity. Some synaptic defects were noted in knockout animals, including synaptic number and physiology, but the role of these molecules in synaptic development is not understood. The effect of Pcdh knockout on dendritic patterning may present a confound to studying synaptogenesis. We showed previously that Pcdh-γs are highly enriched in intracellular compartments in dendrites and spines with localization at only a few synaptic clefts. To gain insight into how Pcdh-γs might affect synapses, we compared synapses that harbored Pcdh-γs versus those that did not for parameters of synaptic maturation including pre- and postsynaptic size, postsynaptic perforations, and spine morphology by light microscopy in cultured hippocampal neurons and by serial section immuno-electron microscopy in hippocampal CA1. In mature neurons, synapses immunopositive for Pcdh-γs were larger in diameter with more frequent perforations. Analysis of spines in cultured neurons revealed that mushroom spines were more frequently immunopositive for Pcdh-γs at their tips than thin spines. These results suggest that Pcdh-γ function at the synapse may be related to promotion of synaptic maturation and stabilization.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Hipocampo/ultraestructura , Microscopía Inmunoelectrónica , Ratas , Ratas Sprague-Dawley
8.
JCI Insight ; 5(23)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33108146

RESUMEN

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Enfermedades de la Hipófisis/genética , Adolescente , Animales , Proteínas Relacionadas con las Cadherinas/metabolismo , Cadherinas/metabolismo , Femenino , Humanos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Hipófisis/crecimiento & desarrollo , Hipófisis/metabolismo , Adulto Joven
9.
Mech Dev ; 144(Pt A): 2-10, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28077304

RESUMEN

Dorsal closure, a late-embryogenesis process, consists in the sealing of an epidermal gap on the dorsal side of the Drosophila embryo. Because of its similarities with wound healing and neural tube closure in humans, it has been extensively studied in the last twenty years. The process requires the coordination of several force generating mechanisms, that together will zip shut the epidermis. Recent works have provided a precise description of the cellular behavior at the origin of these forces and proposed quantitative models of the process. In this review, we will describe the different forces acting in dorsal closure. We will present our current knowledge on the mechanisms generating and regulating these forces and report on the different quantitative mathematical models proposed so far.


Asunto(s)
Drosophila melanogaster/embriología , Desarrollo Embrionario/genética , Epidermis/embriología , Regulación del Desarrollo de la Expresión Génica , Modelos Estadísticos , Actinas/genética , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Tipificación del Cuerpo/genética , Proteínas Relacionadas con las Cadherinas/genética , Proteínas Relacionadas con las Cadherinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Células Epidérmicas , Epidermis/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA