RESUMEN
Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed â¼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.
Asunto(s)
Ligandos , Mapas de Interacción de Proteínas/fisiología , Receptores de Superficie Celular/metabolismo , Receptor DCC/química , Receptor DCC/metabolismo , Humanos , Filogenia , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/clasificación , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/química , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Resonancia por Plasmón de SuperficieRESUMEN
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Asunto(s)
Transición Epitelial-Mesenquimal , Humanos , Animales , Ratones , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transducción de Señal , Adhesión Celular/genética , Movimiento Celular , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Colitis/patología , Colitis/metabolismo , Colitis/genética , Colitis/inducido químicamente , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Intestinos/patologíaRESUMEN
PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.
Asunto(s)
Proteoglicanos de Heparán Sulfato , Neoplasias , Humanos , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación Puntual , Proteínas de la Matriz Extracelular/genética , Inmunoglobulinas , Estabilidad Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolasas/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismoRESUMEN
Glioblastoma (GBM) is the most aggressive brain tumor type with worse clinical outcome due to the hallmarks of strong invasiveness, high rate of recurrence, and therapeutic resistance to temozolomide (TMZ), the first-line drug for GBM, representing a major challenge for successful GBM therapeutics. Understanding the underlying mechanisms that drive GBM progression will shed novel insight into therapeutic strategies. Receptor-type tyrosine-protein phosphatase S (PTPRS) is a frequently mutated gene in human cancers, including GBM. Its role in GBM has not yet been clarified. Here, inactivating PTPRS mutation or deficiency was frequently found in GBM, and deficiency in PTPRS significantly induced defects in the G2M checkpoint and limited GBM cells proliferation, leading to potent resistance to TMZ treatment in vitro and in vivo. Surprisingly, loss of PTPRS triggered an unexpected mesenchymal phenotype that markedly enhances the migratory capabilities of GBM cells through upregulating numerous matrix metalloproteinases via MAPK-MEK-ERK signaling. Therefore, this work provides a therapeutic window for precisely excluding PTPRS-mutated patients who do not respond to TMZ.
Asunto(s)
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Proliferación Celular , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Movimiento Celular/efectos de los fármacos , Mutación , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismoRESUMEN
BACKGROUND: Receptor-type tyrosine-protein phosphatase T (PTPRT) is a transmembrane protein that is involved in cell adhesion. We previously found that PTPRT was downregulated in multiple cancer types and the mutation of PTPRT was associated with cancer early metastasis. However, the impacts of PTPRT downregulation on tumour proliferation, invasion, and clinical interventions such as immune checkpoint inhibitor (ICI) therapies remained largely unknown. METHODS: Gene expression data of non-small cell lung cancer (NSCLC) samples from The Cancer Genome Atlas database were downloaded and used to detect the differential expressed genes between PTPRT-high and PTPRT-low subgroups. Knockdown and overexpress of PTPRT in lung cancer cell lines were performed to explore the function of PTPRT in vitro. Western blot and qRT-PCR were used to evaluate the expression of cell cycle-related genes. CCK-8 assays, wound-healing migration assay, transwell assay, and colony formation assay were performed to determine the functional impacts of PTPRT on cell proliferation, migration, and invasion. KM-plotter was used to explore the significance of selected genes on patient prognosis. RESULTS: PTPRT was found to be downregulated in tumours and lung cancer cell lines compared to normal samples. Cell cycle-related genes (BIRC5, OIP5, and CDCA3, etc.) were specifically upregulated in PTPRT-low lung adenocarcinoma (LUAD). Modulation of PTPRT expression in LUAD cell lines affected the expression of BIRC5 (survivin) significantly, as well as the proliferation, migration, and invasion of tumour cells. In addition, low PTPRT expression level was correlated with worse prognosis of lung cancer and several other cancer types. Furthermore, PTPRT downregulation was associated with elevated tumour mutation burden and tumour neoantigen burden in lung cancer, indicating the potential influence on tumour immunogenicity. CONCLUSION: Our findings uncovered the essential roles of PTPRT in the regulation of proliferation, migration, and invasion of LUAD, and highlighted the clinical significance of PTPRT downregulation in lung cancer.
Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Fosfoproteínas Fosfatasas/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Survivin/genética , Survivin/metabolismoRESUMEN
PTPRT (receptor-type tyrosine-protein phosphatase T), a brain-specific type 1 transmembrane protein, plays an important role in neurodevelopment and synapse formation. However, whether abnormal PTPRT signaling is associated with Alzheimer's disease (AD) remains elusive. Here, we report that Ptprt mRNA expression is found to be downregulated in the brains of both human and mouse models of AD. We further identified that the PTPRT intracellular domain (PICD), which is released by ADAM10- and γ-secretase-dependent cleavage of PTPRT, efficiently translocates to the nucleus via a conserved nuclear localization signal (NLS). We show that inhibition of nuclear translocation of PICD leads to an accumulation of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a substrate of PTPRT-eventually resulting in neuronal cell death. Consistently, RNA sequencing reveals that overexpression of PICD leads to changes in the expression of genes that are functionally associated with synapse formation, cell adhesion, and protein dephosphorylation. Moreover, overexpression of PICD not only decreases the level of phospho-STAT3Y705 and amyloid ß production in the hippocampus of APP/PS1 mice but also partially improves synaptic function and behavioral deficits in this mouse model of AD. These findings suggest that a novel role of the ADAM 10- and γ-secretase-dependent cleavage of PTPRT may alleviate the AD-like neurodegenerative processes.
Asunto(s)
Proteína ADAM10 , Enfermedad de Alzheimer , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Animales , Humanos , Ratones , Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Presenilina-1/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismoRESUMEN
Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS(-) pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation.
Asunto(s)
Colitis/inmunología , Células Dendríticas/inmunología , Intestinos/inmunología , Leucocitos/fisiología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Diferenciación Celular , Movimiento Celular/genética , Células Cultivadas , Colitis/genética , Modelos Animales de Enfermedad , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genéticaRESUMEN
Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the bloodâbrain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.
Asunto(s)
Axones , Proteoglicanos Tipo Condroitín Sulfato , Exosomas , Células de Schwann , Traumatismos de la Médula Espinal , Quinasas Asociadas a rho , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células de Schwann/metabolismo , Exosomas/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Axones/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Femenino , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas de Unión al GTP rho/metabolismoRESUMEN
BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Asunto(s)
Trastorno Autístico , Neuronas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Animales , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Ratones , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Masculino , Corteza Cerebral/metabolismo , Ratones Noqueados , Transmisión Sináptica/fisiología , Ratones Endogámicos C57BL , FemeninoRESUMEN
Traumatic spinal cord injury (SCI) is a leading cause of permanent neurologic disabilities in young adults. Functional impairments after SCI are substantially attributed to the progressive neurodegeneration. However, regeneration of spinal-specific neurons and circuit re-assembly remain challenging in the dysregulated milieu of SCI because of impaired neurogenesis and neuronal maturation by neural precursor cells (NPCs) spontaneously or in cell-based strategies. The extrinsic mechanisms that regulate neuronal differentiation and synaptogenesis in SCI are poorly understood. Here, we perform extensive in vitro and in vivo studies to unravel that SCI-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) impedes neurogenesis of NPCs through co-activation of two receptor protein tyrosine phosphatases, LAR and PTPσ. In adult female rats with SCI, systemic co-inhibition of LAR and PTPσ promotes regeneration of motoneurons and spinal interneurons by engrafted human directly reprogramed caudalized NPCs (drNPC-O2) and fosters their morphologic maturity and synaptic connectivity within the host neural network that culminate in improved recovery of locomotion and sensorimotor integration. Our transcriptomic analysis of engrafted human NPCs in the injured spinal cord confirmed that inhibition of CSPG receptors activates a comprehensive program of gene expression in NPCs that can support neuronal differentiation, maturation, morphologic complexity, signal transmission, synaptic plasticity, and behavioral improvement after SCI. We uncovered that CSPG/LAR/PTPσ axis suppresses neuronal differentiation in part by blocking Wnt/ß-Catenin pathway. Taken together, we provide the first evidence that CSPGs/LAR/PTPσ axis restricts neurogenesis and synaptic integration of new neurons in NPC cellular therapies for SCI. We propose targeting LAR and PTPσ receptors offers a promising clinically-feasible adjunct treatment to optimize the efficacy and neurologic benefits of ongoing NPC-based clinical trials for SCI.SIGNIFICANCE STATEMENT Transplantation of neural precursor cells (NPCs) is a promising approach for replacing damaged neurons after spinal cord injury (SCI). However, survival, neuronal differentiation, and synaptic connectivity of transplanted NPCs within remain challenging in SCI. Here, we unravel that activation of chondroitin sulfate proteoglycan (CSPG)/LAR/PTPσ axis after SCI impedes the capacity of transplanted human NPCs for replacing functionally integrated neurons. Co-blockade of LAR and PTPσ is sufficient to promote re-generation of motoneurons and spinal V1 and V3 interneurons by engrafted human caudalized directly reprogramed NPCs (drNPC-O2) and facilitate their synaptic integration within the injured spinal cord. CSPG/LAR/PTPσ axis appears to suppress neuronal differentiation of NPCs by inhibiting Wnt/ß-Catenin pathway. These findings identify targeting CSPG/LAR/PTPσ axis as a promising strategy for optimizing neuronal replacement, synaptic re-connectivity, and neurologic recovery in NPC-based strategies.
Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Femenino , Humanos , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Ratas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , beta CateninaRESUMEN
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.
Asunto(s)
Glioblastoma , Glioma , Humanos , Adhesión Celular , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Inteligencia ArtificialRESUMEN
PTPmu (PTPµ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma (glioma), and the resulting extracellular and intracellular fragments are believed to stimulate cancer cell growth and/or migration. Therefore, drugs targeting these fragments may have therapeutic potential. Here, we used the AtomNet® platform, the first deep learning neural network for drug design and discovery, to screen a molecular library of several million compounds and identified 76 candidates predicted to interact with a groove between the MAM and Ig extracellular domains required for PTPmu-mediated cell adhesion. These candidates were screened in two cell-based assays: PTPmu-dependent aggregation of Sf9 cells and a tumor growth assay where glioma cells grow in three-dimensional spheres. Four compounds inhibited PTPmu-mediated aggregation of Sf9 cells, six compounds inhibited glioma sphere formation/growth, while two priority compounds were effective in both assays. The stronger of these two compounds inhibited PTPmu aggregation in Sf9 cells and inhibited glioma sphere formation down to 25 micromolar. Additionally, this compound was able to inhibit the aggregation of beads coated with an extracellular fragment of PTPmu, directly demonstrating an interaction. This compound presents an interesting starting point for the development of PTPmu-targeting agents for treating cancer including glioblastoma.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Inteligencia Artificial , Transducción de Señal , Proteínas Tirosina Fosfatasas/metabolismo , Adhesión CelularRESUMEN
Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulfate proteoglycans (CSPGs), which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase ABC (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates brain-derived neurotrophic factor (BDNF)-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase σ (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ-deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex.SIGNIFICANCE STATEMENT Critical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV+) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV+ neurons. Protein tyrosine phosphatase σ (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV+ interneurons.
Asunto(s)
Antidepresivos/farmacología , Condroitinasas y Condroitín Liasas/farmacología , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiologíaRESUMEN
Bone marrow mesenchymal stem cells (MSCs) are heterogeneous osteo-progenitors that are mainly responsible for bone regeneration and homeostasis. In vivo, a subpopulation of bone marrow MSCs persists in a quiescent state, providing a source of new cells for repair. Previously, we reported that induction of quiescence in hMSCs in vitro skews their differentiation potential in favour of osteogenesis while suppressing adipogenesis. Herein, we uncover a new role for a protein tyrosine phosphatase, receptor type U (PTPRU) in repressing osteogenesis during quiescence. A 75 kD PTPRU protein isoform was found to be specifically induced during quiescence and down-regulated during cell cycle reactivation. Using siRNA-mediated knockdown, we report that in proliferating hMSC, PTPRU preserves self-renewal, while in quiescent hMSC, PTPRU not only maintains reversibility of cell cycle arrest but also suppresses expression of osteogenic lineage genes. Knockdown of PTPRU in proliferating or quiescent hMSC de-represses osteogenic markers, and enhances induced osteogenic differentiation. We also show that PTPRU positively regulates a ß-catenin-TCF transcriptional reporter. Taken together, our study suggests a role for a quiescence-induced 75kD PTPRU isoform in modulating bone differentiation in hMSC, potentially involving the Wnt pathway.
Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Osteogénesis/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Diferenciación Celular , Vía de Señalización Wnt/genética , Proteínas Portadoras/metabolismo , Tirosina/metabolismo , Células Cultivadas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismoRESUMEN
BACKGROUND: Intracerebral hemorrhage (ICH) is associated with high morbidity and mortality rates. However, extant investigations have mainly focused on gray matter injury within the primary injury site after ICH rather than on white matter (WM) injury in the brain and spinal cord. This focus partly accounts for the diminished therapeutic discovery. Recent evidence suggests that chondroitin sulphate proteoglycans (CSPG), which can bind to the neural transmembrane protein tyrosine phosphatase-sigma (PTPσ), may facilitate axonal regrowth and remyelination by ameliorating neuroinflammation. METHODS: A clinically relevant ICH model was established using adult C57BL/6 mice. The mice were then treated systemically with intracellular sigma peptide (ISP), which specifically targets PTPσ. Sensorimotor function was assessed by various behavioral tests and electrophysiological assessment. Western blot was used to verify the expression levels of Iba-1 and different inflammatory cytokines. The morphology of white matter tracts of brain and spinal cord was evaluated by immunofluorescence staining and transmission electron microscopy (TEM). Adeno-associated virus (AAV) 2/9 injection was used to assess the ipsilateral axonal compensation after injury. Parallel in vitro studies on the effects of CSPG interference on oligodendrocyte-DRG neuron co-culture explored the molecular mechanism through which ISP treatment promoted myelination capability. RESULTS: ISP, by targeting PTPσ, improved WM integrity and sensorimotor recovery via immunomodulation. In addition, ISP administration significantly decreased WM injury in the peri-hematomal region as well as cervical spinal cord, enhanced axonal myelination and facilitated neurological restoration, including electrophysiologically assessed sensorimotor functions. Parallel in vitro studies showed that inhibition of PTPσ by ISP fosters myelination by modulating the Erk/CREB signaling pathway. CONCLUSIONS: Our findings revealed for the first time that manipulation of PTPσ signaling by ISP can promote prolonged neurological recovery by restoration of the integrity of neural circuits in the CNS through modulation of Erk/CREB signaling pathway.
Asunto(s)
Accidente Cerebrovascular Hemorrágico , Sustancia Blanca , Animales , Hemorragia Cerebral/tratamiento farmacológico , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sustancia Blanca/metabolismoRESUMEN
Colorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation. Notably, genes expressed in the stem-cell compartment of the intestine were among those most sensitive to anti-RSPO3 treatment. This observation, combined with functional assays, suggests that a stem-cell compartment drives PTPRK-RSPO3 colorectal tumour growth and indicates that the therapeutic targeting of stem-cell properties within tumours may be a clinically relevant approach for the treatment of colorectal tumours.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Terapia Molecular Dirigida , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Trombospondinas/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , División Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/efectos de los fármacos , Intestinos/patología , Masculino , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Trombospondinas/antagonistas & inhibidores , Trombospondinas/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The ß-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimer's disease (AD), owing to its role in the production of neurotoxic amyloid beta (Aß) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering Aß concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Furthermore, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD.
Asunto(s)
Enfermedad de Alzheimer , Receptor DCC , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Biología Computacional , Receptor DCC/genética , Receptor DCC/metabolismo , Minería de Datos , Humanos , Monoéster Fosfórico Hidrolasas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismoRESUMEN
BACKGROUND: As a type of head and neck squamous cell carcinoma (HNSCC), oral squamous cell carcinoma (OSCC) has a high incidence and low survival rate. Frequent deletion of protein tyrosine phosphatase receptor type sigma (PTPRS) has been found in HNSCC. Long non-coding RNA (lncRNA) HCG11 and miR-455-5p have been reported to be involved in several cancers, in which miR-455-5p was found to be up-regulated in the OSCC. However, the role of HCG11 in OSCC development is still unclear. METHODS: Several co-transfection systems were established to explore the regulation of HCG11 on OSCC cells. Cell proliferation was evaluated by the MTT assay, flow cytometry of cell cycle distribution, immunofluorescence of Ki67 and western blotting. A dual luciferase reporter assay was performed to verify the binding effects of miR-455-5p on HCG11 and PTPRS. The role of HCG11 knockdown in OSCC cell growth was also confirmed by nude mouse tumorigenicity assay in vivo. RESULTS: Knockdown of HCG11 increased OSCC cell proliferation, as indicated by enhanced cell vitalities over time, increased G1/S transition and Ki67 levels. Furthermore, lncRNA HCG11 was shown to negatively regulate miR-455-5p and miR-455-5p targeted PTPRS directly to affect its downstream indicators, which can further modulate OSCC cell proliferation and growth. The results obtained in vivo confirmed that HCG11 knockdown promoted OSCC cell growth. CONCLUSIONS: The lncRNA HCG11/miR-R-455-5p axis can be considered as an upstream signalling circuit of PTPRS with respect to regulating its activity and downstream pathways to further influence the progression of OSCC. This finding may provide a novel RNA-based therapeutic target for OSCC treatment.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , MicroARNs/metabolismo , Neoplasias de la Boca/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Ciclo Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Desnudos , Neoplasias de la Boca/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismoRESUMEN
Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPσ has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.
Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regeneración Nerviosa , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Regeneración Nerviosa/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Traumatismos de la Médula Espinal/patologíaRESUMEN
Identifying the variants that alter protein function is a promising strategy for deciphering the biological consequences of somatic mutations during tumorigenesis, which could provide novel targets for the development of cancer therapies. Here, based on our previously developed method, we present a strategy called AlloDriver that identifies cancer driver genes/proteins as possible targets from mutations. AlloDriver utilizes structural and dynamic features to prioritize potentially functional genes/proteins in individual cancers via mapping mutations generated from clinical cancer samples to allosteric/orthosteric sites derived from three-dimensional protein structures. This strategy exhibits desirable performance in the reemergence of known cancer driver mutations and genes/proteins from clinical samples. Significantly, the practicability of AlloDriver to discover novel cancer driver proteins in head and neck squamous cell carcinoma (HNSC) was tested in a real case of human protein tyrosine phosphatase, receptor type K (PTPRK) through a L1143F driver mutation located at the allosteric site of PTPRK, which was experimentally validated by cell proliferation assay. AlloDriver is expected to help to uncover innovative molecular mechanisms of tumorigenesis by perturbing proteins and to discover novel targets based on cancer driver mutations. The AlloDriver is freely available to all users at http://mdl.shsmu.edu.cn/ALD.