Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7955): 190-198, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949198

RESUMEN

The membrane-integrated synthase FKS is involved in the biosynthesis of ß-1,3-glucan, the core component of the fungal cell wall1,2. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp3,4. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal ß-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.


Asunto(s)
Microscopía por Crioelectrón , Glucosiltransferasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Antifúngicos/farmacología , beta-Glucanos/metabolismo , Dominio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Equinocandinas/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/ultraestructura , Pruebas de Sensibilidad Microbiana , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Nature ; 571(7765): 366-370, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243363

RESUMEN

Type 4 P-type ATPases (P4-ATPases) are lipid flippases that drive the active transport of phospholipids from exoplasmic or luminal leaflets to cytosolic leaflets of eukaryotic membranes. The molecular architecture of P4-ATPases and the mechanism through which they recognize and transport lipids have remained unknown. Here we describe the cryo-electron microscopy structure of the P4-ATPase Drs2p-Cdc50p, a Saccharomyces cerevisiae lipid flippase that is specific to phosphatidylserine and phosphatidylethanolamine. Drs2p-Cdc50p is autoinhibited by the C-terminal tail of Drs2p, and activated by the lipid phosphatidylinositol-4-phosphate (PtdIns4P or PI4P). We present three structures that represent the complex in an autoinhibited, an intermediate and a fully activated state. The analysis highlights specific features of P4-ATPases and reveals sites of autoinhibition and PI4P-dependent activation. We also observe a putative lipid translocation pathway in this flippase that involves a conserved PISL motif in transmembrane segment 4 and polar residues of transmembrane segments 2 and 5, in particular Lys1018, in the centre of the lipid bilayer.


Asunto(s)
ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Microscopía por Crioelectrón , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Transporte Biológico , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/ultraestructura , Activación Enzimática , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/ultraestructura
3.
Nature ; 570(7762): 538-542, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31189955

RESUMEN

Ribosome-associated quality control (RQC) provides a rescue pathway for eukaryotic cells to process faulty proteins after translational stalling of cytoplasmic ribosomes1-6. After dissociation of ribosomes, the stalled tRNA-bound peptide remains associated with the 60S subunit and extended by Rqc2 by addition of C-terminal alanyl and threonyl residues (CAT tails)7-9, whereas Vms1 catalyses cleavage and release of the peptidyl-tRNA before or after addition of CAT tails10-12. In doing so, Vms1 counteracts CAT-tailing of nuclear-encoded mitochondrial proteins that otherwise drive aggregation and compromise mitochondrial and cellular homeostasis13. Here we present structural and functional insights into the interaction of Saccharomyces cerevisiae Vms1 with 60S subunits in pre- and post-peptidyl-tRNA cleavage states. Vms1 binds to 60S subunits with its Vms1-like release factor 1 (VLRF1), zinc finger and ankyrin domains. VLRF1 overlaps with the Rqc2 A-tRNA position and interacts with the ribosomal A-site, projecting its catalytic GSQ motif towards the CCA end of the tRNA, its Y285 residue dislodging the tRNA A73 for nucleolytic cleavage. Moreover, in the pre-state, we found the ABCF-type ATPase Arb1 in the ribosomal E-site, which stabilizes the delocalized A73 of the peptidyl-tRNA and stimulates Vms1-dependent tRNA cleavage. Our structural analysis provides mechanistic insights into the interplay of the RQC factors Vms1, Rqc2 and Arb1 and their role in the protection of mitochondria from the aggregation of toxic proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Homeostasis , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/ultraestructura , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Secuencia de Aminoácidos , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Proteoma/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/química , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
4.
Mol Cell ; 67(2): 266-281.e4, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28648781

RESUMEN

Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Metabolismo Energético , Genoma Fúngico , Inestabilidad Genómica , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Hongos/genética , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolómica , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 299(2): 102861, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603766

RESUMEN

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Asunto(s)
Antifúngicos , Diseño de Fármacos , Proteínas de Transferencia de Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Transporte Biológico/efectos de los fármacos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Transducción de Señal , Antifúngicos/química , Antifúngicos/farmacología
6.
Cell ; 137(3): 397-8, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410534

RESUMEN

During cellular stress, monoubiquitin is in demand due to the accumulation of misfolded proteins that require proteasomal degradation. Kimura et al. (2009) now show in yeast that monoubiquitin levels are bolstered during stress conditions by downregulation of the protein Rfu1, an inhibitor of the deubiquitinating enzyme Doa4.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Alostérica , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Humanos , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
7.
Cell ; 137(3): 549-59, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410548

RESUMEN

The dynamic and reversible process of ubiquitin modification controls various cellular activities. Ubiquitin exists as monomers, unanchored chains, or protein-conjugated forms, but the regulation of these interconversions remains largely unknown. Here, we identified a protein designated Rfu1 (regulator of free ubiquitin chains 1), which regulates intracellular concentrations of monomeric ubiquitins and free ubiquitin chains in Saccharomyces cerevisiae. Rfu1 functions as an inhibitor of Doa4, a deubiquitinating enzyme. Rapid loss of free ubiquitin chains upon heat shock, a condition in which more proteins require ubiquitin conjugation, was mediated in part by Doa4 and Rfu1. Thus, regulation of ubiquitin homeostasis is controlled by a balance between a deubiquitinating enzyme and its inhibitor. We propose that free ubiquitin chains function as a ubiquitin reservoir that allows maintenance of monomeric ubiquitins at adequate levels under normal conditions and rapid supply for substrate conjugation under stress conditions.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulación Alostérica , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Humanos , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Transducción de Señal , Estrés Fisiológico , Ubiquitina Tiolesterasa , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
8.
Mol Cell ; 63(3): 433-44, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477907

RESUMEN

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ingeniería de Proteínas , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Humanos , Modelos Moleculares , Mutación , Nucleosomas/enzimología , Nucleosomas/genética , Fosforilación , Regiones Promotoras Genéticas , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad del ARN/efectos de los fármacos , ARN de Hongos/efectos de los fármacos , ARN de Hongos/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
Nature ; 542(7640): 255-259, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146474

RESUMEN

Separase is a cysteine protease with a crucial role in the dissolution of cohesion among sister chromatids during chromosome segregation. In human tumours separase is overexpressed, making it a potential target for drug discovery. The protease activity of separase is strictly regulated by the inhibitor securin, which forms a tight complex with separase and may also stabilize this enzyme. Separases are large, 140-250-kilodalton enzymes, with an amino-terminal α-helical region and a carboxy-terminal caspase-like catalytic domain. Although crystal structures of the C-terminal two domains of separase and low-resolution electron microscopy reconstructions of the separase-securin complex have been reported, the atomic structures of full-length separase and especially the complex with securin are unknown. Here we report crystal structures at up to 2.6 Å resolution of the yeast Saccharomyces cerevisiae separase-securin complex. The α-helical region of separase (also known as Esp1) contains four domains (I-IV), and a substrate-binding domain immediately precedes the catalytic domain and has tight associations with it. The separase-securin complex assumes a highly elongated structure. Residues 258-373 of securin (Pds1), named the separase interaction segment, are primarily in an extended conformation and traverse the entire length of separase, interacting with all of its domains. Most importantly, residues 258-269 of securin are located in the separase active site, illuminating the mechanism of inhibition. Biochemical studies confirm the structural observations and indicate that contacts outside the separase active site are crucial for stabilizing the complex, thereby defining an important function for the helical region of separase.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Securina/química , Securina/metabolismo , Separasa/antagonistas & inhibidores , Separasa/química , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Separasa/metabolismo
10.
PLoS Genet ; 16(6): e1008865, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603360

RESUMEN

Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Calcineurina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Factores de Transcripción Forkhead/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas del Grupo de Alta Movilidad/genética , Isomerasa de Peptidilprolil/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Tacrolimus/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética
11.
Nature ; 536(7615): 184-9, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27462806

RESUMEN

The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.


Asunto(s)
Evolución Molecular , Homeostasis , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Secuencia Conservada , Células HeLa , Humanos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Subunidades de Proteína/metabolismo , Proteolisis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
12.
J Biochem Mol Toxicol ; 35(4): e22688, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33368871

RESUMEN

A series of new benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides 12a-n as potential anti-α-glucosidase agents were designed and synthesized. α-Glucosidase inhibition assay demonstrated that all the synthesized compounds 12a-n (half-maximal inhibitory concentration [IC50 ] values in the range of 40.7 ± 0.3-173.6 ± 1.9 µM) were more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 µM). Among them, the most potent compound was compound 12c, with inhibitory activity around 19-fold higher than acarbose. Since the most potent compound inhibited α-glucosidase in a competitive mode, a docking study of this compound was also performed into the active site of α-glucosidase. In vitro and in silico toxicity assays of the title compounds were also performed.


Asunto(s)
Acetamidas , Inhibidores de Glicósido Hidrolasas , Oxadiazoles , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , alfa-Glucosidasas/química , Acetamidas/síntesis química , Acetamidas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Oxadiazoles/síntesis química , Oxadiazoles/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química
13.
Nature ; 520(7545): 114-8, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25539084

RESUMEN

Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)--a process that is mediated by the conserved DNA damage response kinase, Tel1(ATM). The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1(ATM) prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , 3-Isopropilmalato Deshidrogenasa/genética , Oxidorreductasas de Alcohol/genética , Aminohidrolasas/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Genes Fúngicos/genética , Recombinación Homóloga/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Pirofosfatasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 51(6): 829-39, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24035500

RESUMEN

A chemicogenetic screen was performed in budding yeast mutants that have a weakened replication stress response. This identified an inhibitor of target of rapamycin (TOR) complexes 1 and 2 that selectively enhances the sensitivity of sgs1Δ cells to hydroxyurea and camptothecin. More importantly, the inhibitor has strong synthetic lethality in combination with either the break-inducing antibiotic Zeocin or ionizing radiation, independent of the strain background. Lethality correlates with a rapid fragmentation of chromosomes that occurs only when TORC2, but not TORC1, is repressed. Genetic inhibition of Tor2 kinase, or its downstream effector kinases Ypk1/Ypk2, conferred similar synergistic effects in the presence of Zeocin. Given that Ypk1/Ypk2 controls the actin cytoskeleton, we tested the effects of actin modulators latrunculin A and jasplakinolide. These phenocopy TORC2 inhibition on Zeocin, although modulation of calcineurin-sensitive transcription does not. These results implicate TORC2-mediated actin filament regulation in the survival of low levels of DNA damage.


Asunto(s)
Inestabilidad Genómica , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Bleomicina/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cromosomas/efectos de los fármacos , Cromosomas/genética , Cromosomas/efectos de la radiación , Daño del ADN/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Radiación Ionizante , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Tiazolidinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
15.
Cell Mol Life Sci ; 77(15): 3041-3058, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31728581

RESUMEN

The pre-initiation complex (pre-IC) has been proposed for two decades as an intermediate right before the maturation of the eukaryotic DNA replication fork. However, its existence and biochemical nature remain enigmatic. Here, through combining several enrichment strategies, we are able to isolate an endogenous dimeric CMG-containing complex (designated as d-CMG) distinct from traditional single CMG (s-CMG) and in vitro reconstituted dimeric CMG. D-CMG is assembled upon entry into the S phase and shortly matures into s-CMG/replisome, leading to the fact that only ~ 5% of the total CMG-containing complexes can be detected as d-CMG in vivo. Mass spectra reveal that RPA and DNA Pol α/primase co-purify with s-CMG, but not with d-CMG. Consistently, the former fraction is able to catalyze DNA unwinding and de novo synthesis, while the latter catalyzes neither. The two CMGs in d-CMG display flexibly orientated conformations under an electronic microscope. When DNA Pol α-primase is inactivated, d-CMG % rose up to 29%, indicating an incomplete pre-IC/fork transition. These findings reveal biochemical properties of the d-CMG/pre-IC and provide in vivo evidence to support the pre-IC/fork transition as a bona fide step in replication initiation.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa I/antagonistas & inhibidores , ADN Polimerasa I/metabolismo , ADN Primasa/antagonistas & inhibidores , ADN Primasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Microscopía Electrónica , Proteínas Nucleares/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
16.
Nucleic Acids Res ; 47(15): 8163-8179, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31287876

RESUMEN

Type II topoisomerases catalyze essential DNA transactions and are proven drug targets. Drug discrimination by prokaryotic and eukaryotic topoisomerases is vital to therapeutic utility, but is poorly understood. We developed a next-generation sequencing (NGS) approach to identify drug-resistance mutations in eukaryotic topoisomerases. We show that alterations conferring resistance to poisons of human and yeast topoisomerase II derive from a rich mutational 'landscape' of amino acid substitutions broadly distributed throughout the entire enzyme. Both general and discriminatory drug-resistant behaviors are found to arise from different point mutations found at the same amino acid position and to occur far outside known drug-binding sites. Studies of selected resistant enzymes confirm the NGS data and further show that the anti-cancer quinolone vosaroxin acts solely as an intercalating poison, and that the antibacterial ciprofloxacin can poison yeast topoisomerase II. The innate drug-sensitivity of the DNA binding and cleavage region of human and yeast topoisomerases (particularly hTOP2ß) is additionally revealed to be significantly regulated by the enzymes' adenosine triphosphatase regions. Collectively, these studies highlight the utility of using NGS-based methods to rapidly map drug resistance landscapes and reveal that the nucleotide turnover elements of type II topoisomerases impact drug specificity.


Asunto(s)
Ciprofloxacina/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Naftiridinas/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiazoles/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , ADN/química , ADN/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 115(8): 1795-1800, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29434040

RESUMEN

Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Šare sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/enzimología , Inhibidores Enzimáticos/química , Hidroliasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Herbicidas/química , Hidroliasas/química , Hidroliasas/ultraestructura , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
18.
Proc Natl Acad Sci U S A ; 115(18): 4684-4689, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674454

RESUMEN

Lysosomes have an important role in cellular protein and organelle quality control, metabolism, and signaling. On the surface of lysosomes, the PIKfyve/Fab1 complex generates phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, which is critical for lysosomal membrane homeostasis during acute osmotic stress and for lysosomal signaling. Here, we identify the inverted BAR protein Ivy1 as an inhibitor of the Fab1 complex with a direct influence on PI-3,5-P2 levels and vacuole homeostasis. Ivy1 requires Ypt7 binding for its function, binds PI-3,5-P2, and interacts with the Fab1 kinase. Colocalization of Ivy1 and Fab1 is lost during osmotic stress. In agreement with Ivy1's role as a Fab1 regulator, its overexpression blocks Fab1 activity during osmotic shock and vacuole fragmentation. Conversely, loss of Ivy1, or lateral relocalization of Ivy1 on vacuoles away from Fab1, results in vacuole fragmentation and poor growth. Our data suggest that Ivy1 modulates Fab1-mediated PI-3,5-P2 synthesis during membrane stress and may allow adjustment of the vacuole membrane environment.


Asunto(s)
Proteínas Portadoras/metabolismo , Membranas Intracelulares/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas Portadoras/genética , Lisosomas/genética , Lisosomas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
19.
PLoS Genet ; 14(4): e1007356, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659581

RESUMEN

The evolutionarily-conserved sirtuin family of histone deacetylases regulates a multitude of DNA-associated processes. A recent genome-wide screen conducted in the yeast Saccharomyces cerevisiae identified Yku70/80, which regulate nonhomologous end-joining (NHEJ) and telomere structure, as being essential for cell proliferation in the presence of the pan-sirtuin inhibitor nicotinamide (NAM). Here, we show that sirtuin-dependent deacetylation of both histone H3 lysine 56 and H4 lysine 16 promotes growth of yku70Δ and yku80Δ cells, and that the NAM sensitivity of these mutants is not caused by defects in DNA double-strand break repair by NHEJ, but rather by their inability to maintain normal telomere length. Indeed, our results indicate that in the absence of sirtuin activity, cells with abnormally short telomeres, e.g., yku70/80Δ or est1/2Δ mutants, present striking defects in S phase progression. Our data further suggest that early firing of replication origins at short telomeres compromises the cellular response to NAM- and genotoxin-induced replicative stress. Finally, we show that reducing H4K16ac in yku70Δ cells limits activation of the DNA damage checkpoint kinase Rad53 in response to replicative stress, which promotes usage of translesion synthesis and S phase progression. Our results reveal a novel interplay between sirtuin-mediated regulation of chromatin structure and telomere-regulating factors in promoting timely completion of S phase upon replicative stress.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Niacinamida/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirtuinas/antagonistas & inhibidores , Sirtuinas/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
20.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299598

RESUMEN

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.


Asunto(s)
Complejo III de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA