Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 26(1): 119, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054536

RESUMEN

BACKGROUND: Breast cancer is the most common cancer in women diagnosed in the U.S. and worldwide. Obesity increases breast cancer risk without clear underlying molecular mechanisms. Our studies demonstrate that circulating adipose fatty acid binding protein (A-FABP, or FABP4) links obesity-induced dysregulated lipid metabolism and breast cancer risk, thus potentially offering a new target for breast cancer treatment. METHODS: We immunized FABP4 knockout mice with recombinant human FABP4 and screened hybridoma clones with specific binding to FABP4. The potential effects of antibodies on breast cancer cells in vitro were evaluated using migration, invasion, and limiting dilution assays. Tumor progression in vivo was evaluated in various types of tumorigenesis models including C57BL/6 mice, Balb/c mice, and SCID mice. The phenotype and function of immune cells in tumor microenvironment were characterized with multi-color flow cytometry. Tumor stemness was detected by ALDH assays. To characterize antigen-antibody binding capacity, we determined the dissociation constant of selected anti-FABP4 antibodies via surface plasmon resonance. Further analyses in tumor tissue were performed using 10X Genomics Visium spatial single cell technology. RESULTS: Herein, we report the generation of humanized monoclonal antibodies blocking FABP4 activity for breast cancer treatment in mouse models. One clone, named 12G2, which significantly reduced circulating levels of FABP4 and inhibited mammary tumor growth, was selected for further characterization. After confirming the therapeutic efficacy of the chimeric 12G2 monoclonal antibody consisting of mouse variable regions and human IgG1 constant regions, 16 humanized 12G2 monoclonal antibody variants were generated by grafting its complementary determining regions to selected human germline sequences. Humanized V9 monoclonal antibody showed consistent results in inhibiting mammary tumor growth and metastasis by affecting tumor cell mitochondrial metabolism. CONCLUSIONS: Our current evidence suggests that targeting FABP4 with humanized monoclonal antibodies may represent a novel strategy for the treatment of breast cancer and possibly other obesity- associated diseases.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión a Ácidos Grasos , Animales , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/inmunología , Humanos , Femenino , Ratones , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Microambiente Tumoral/inmunología , Modelos Animales de Enfermedad , Ratones SCID
2.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35650684

RESUMEN

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Asunto(s)
Ansiolíticos , Ansiedad , Proteínas de Unión a Ácidos Grasos , Corteza Prefrontal , Receptor Cannabinoide CB2 , Animales , Ratas , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Ansiolíticos/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/metabolismo , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo
3.
Genome Res ; 29(9): 1442-1452, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31467027

RESUMEN

Obesity is an increasing pathophysiological problem in developed societies. Despite all major progress in understanding molecular mechanisms of obesity, currently available anti-obesity drugs have shown limited efficacy with severe side effects. CRISPR interference (CRISPRi) mechanism based on catalytically dead Cas9 (dCas9) and single guide RNA (sgRNA) was combined with a targeted nonviral gene delivery system to treat obesity and obesity-induced type 2 diabetes. A fusion peptide targeting a vascular and cellular marker of adipose tissue, prohibitin, was developed by conjugation of adipocyte targeting sequence (CKGGRAKDC) to 9-mer arginine (ATS-9R). (dCas9/sgFabp4) + ATS-9R oligoplexes showed effective condensation and selective delivery into mature adipocytes. Targeted delivery of the CRISPRi system against Fabp4 to white adipocytes by ATS-9R induced effective silencing of Fabp4, resulting in reduction of body weight and inflammation and restoration of hepatic steatosis in obese mice. This RNA-guided DNA recognition platform provides a simple and safe approach to regress and treat obesity and obesity-induced metabolic syndromes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/tratamiento farmacológico , Obesidad/tratamiento farmacológico , ARN Guía de Kinetoplastida/administración & dosificación , Células 3T3 , Adipocitos Blancos/química , Adipocitos Blancos/citología , Animales , Sistemas CRISPR-Cas , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Hígado Graso/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Resistencia a la Insulina , Ratones , Terapia Molecular Dirigida , Obesidad/genética , ARN Guía de Kinetoplastida/farmacología
4.
Bioorg Chem ; 129: 106184, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244323

RESUMEN

Fatty acid binding protein 5 (FABP5) is a highly promising target for the development of analgesics as its inhibition is devoid of CB1R-dependent side-effects. The design and discovery of highly potent and FABP5-selective truxillic acid (TA) monoesters (TAMEs) is the primary aim of the present study. On the basis of molecular docking analysis, ca. 2,000 TAMEs were designed and screened in silico, to funnel down to 55 new TAMEs, which were synthesized and assayed for their affinity (Ki) to FABP5, 3 and 7. The SAR study revealed that the introduction of H-bond acceptors to the far end of the 1,1'-biphenyl-3-yl and 1,1'-biphenyl-2-yl ester moieties improved the affinity of α-TAMEs to FABP5. Compound γ-3 is the first γ-TAME, demonstrating a high affinity to FABP5 and competing with α-TAMEs. We identified the best 20 TAMEs based on the FABP5/3 selectivity index. The clear front runner is α-16, bearing a 2­indanyl ester moiety. In sharp contrast, no ε-TAMEs made the top 20 in this list. However, α-19 and ε-202, have been identified as potent FABP3-selective inhibitors for applications related to their possible use in the protection of cardiac myocytes and the reduction of α-synuclein accumulation in Parkinson's disease. Among the best 20 TAMEs selected based on the affinity to FABP7, 13 out of 20 TAMEs were found to be FABP7-selective, with α-21 as the most selective. This study identified several TAMEs as FABP7-selective inhibitors, which would have potentially beneficial therapeutic effects in diseases such as Down's syndrome, schizophrenia, breast cancer, and astrocytoma. We successfully introduced the α-TA monosilyl ester (TAMSE)-mediated protocol to dramatically improve the overall yields of α-TAMEs. α-TAMSEs with TBDPS as the silyl group is isolated in good yields and unreacted α-TA/ α-MeO-TA, as well as disilyl esters (α-TADSEs) are fully recycled. Molecular docking analysis provided rational explanations for the observed binding affinity and selectivity of the FABP3, 5 and 7 inhibitors, including their α, γ and ε isomers, in this study.


Asunto(s)
Analgésicos , Ciclobutanos , Proteínas de Unión a Ácidos Grasos , Analgésicos/química , Analgésicos/farmacología , Ésteres/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Ciclobutanos/química , Ciclobutanos/farmacología , Relación Estructura-Actividad
5.
Biochem Biophys Res Commun ; 539: 28-33, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33418190

RESUMEN

Ciliogenesis is often impaired in some cancer cells, leading to acceleration of cancer phenotypes such as cell migration and proliferation. From the investigation of primary cilia of 16 gastric cancer cells (GCs), we found that GCs could be grouped into four primary cilia (PC)-positive GCs and 12 PC-negative GCs. The proliferation of the PC-positive GCs was lower than that of PC-negative GCs. To explore the role of fatty acid binding protein 4 (FABP4), which is a known oncogenic factor, in ciliogenesis, FABP4 expression and function were inhibited by transfection of cells with short interfering RNA targeting FABP4 (siFABP4) or FABP4 inhibitor treatment. Notably, the proliferation and migration of the cilia-forming GCs was effectively suppressed by inhibition of FABP4. In addition, the primary cilia in GCs were restored by a factor greater than two, suggesting a negative role of FABP4 in ciliogenesis in these GCs and FABP4 as a potential anticancer target.


Asunto(s)
Compuestos de Bifenilo/farmacología , Cilios/metabolismo , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Pirazoles/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cilios/patología , Proteínas de Unión a Ácidos Grasos/genética , Humanos , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
6.
J Cell Mol Med ; 24(19): 11188-11197, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32896039

RESUMEN

Acute myocardial infarction is characterized by ischaemia-induced cardiomyocyte apoptosis, in which the endoplasmic reticulum (ER) stress plays an important role. The fatty acid-binding protein-4 (FABP4) has been implicated in regulating ER stress and apoptosis. Yet, whether FABP4 is involved in modulating cardiomyocyte apoptosis remains unclarified. By applying an in vitro model of hypoxia-induced apoptosis of H9c2 cardiomyocytes, we found that FABP4 expression was elevated upon hypoxia stimulation, which was further demonstrated to be transcriptionally activated by the hypoxia-inducible factor 1a (HIF-1α). In addition, the pharmacological inhibition of FABP4 with BMS309403 protected against hypoxia-induced apoptosis in cardiomyocytes, indicating that FABP4 induction is detrimental for cardiomyocyte survival under hypoxic condition. Moreover, BMS309403 attenuated ER stress in cardiomyocytes exposed to hypoxia, which, however, was reversed by tunicamycin, an ER stress activator. More importantly, the protective effect of BMS309403 on cardiomyocytes vanished in the presence of tunicamycin. Thus, these observations establish that FABP4 inhibitor BMS309403 reduces hypoxia-induced cardiomyocyte apoptosis through attenuating excessive ER stress, implying that FABP4 inhibition may be of clinical benefit for MI treatment.


Asunto(s)
Apoptosis , Compuestos de Bifenilo/farmacología , Citoprotección/efectos de los fármacos , Estrés del Retículo Endoplásmico , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Miocitos Cardíacos/patología , Pirazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacos
7.
Prostate ; 80(1): 88-98, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661167

RESUMEN

BACKGROUND: Prostate cancer (PCa) remains the second leading cause of cancer-related death among men. Taxanes, such as docetaxel and cabazitaxel are utilized in standard treatment regimens for chemotherapy naïve castration-resistant PCa. However, tumors often develop resistance to taxane chemotherapeutics, highlighting a need to identify additional therapeutic targets. Fatty acid-binding protein 5 (FABP5) is an intracellular lipid carrier whose expression is upregulated in metastatic PCa and increases cell growth, invasion, and tumor formation. Here, we assessed whether FABP5 inhibitors synergize with semi-synthetic taxanes to induce cytotoxicity in vitro and attenuate tumor growth in vivo. METHODS: PC3, DU-145, and 22Rv1 PCa cells were incubated with FABP5 inhibitors Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or SBFI-103 in the presence or absence of docetaxel or cabazitaxel, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. Cytotoxicity of SBFI-102 and SBFI-103 was also evaluated in noncancerous cells. For the in vivo studies, PC3 cells were subcutaneously implanted into BALB/c nude mice, which were subsequently treated with FABP5 inhibitors, docetaxel, or a combination of both. RESULTS: SBFI-102 and SBFI-103 produced cytotoxicity in the PCa cells. Coincubation of the PCa cells with FABP5 inhibitors and docetaxel or cabazitaxel produced synergistic cytotoxic effects in vitro. Treatment of mice with FABP5 inhibitors reduced tumor growth and a combination of FABP5 inhibitors with a submaximal dose of docetaxel reduced tumor growth to a larger extent than treatment with each drug alone. CONCLUSIONS: FABP5 inhibitors increase the cytotoxic and tumor-suppressive effects of taxanes in PCa cells. The ability of these drugs to synergize could permit more efficacious antitumor activity while allowing for dosages of docetaxel or cabazitaxel to be lowered, potentially decreasing taxane-resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Docetaxel/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Taxoides/farmacología , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Docetaxel/administración & dosificación , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Taxoides/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Comput Aided Mol Des ; 34(12): 1275-1288, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33067653

RESUMEN

Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflammatory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic echinococcosis (or hydatidosis). These diseases are included in the World Health Organization's list of priority neglected tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally confirming the model's predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification of such four FABP, for which initial structural and functional characterization is reported here.


Asunto(s)
Simulación por Computador , Reposicionamiento de Medicamentos/métodos , Equinococosis/tratamiento farmacológico , Echinococcus multilocularis/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Animales , Antihelmínticos/farmacología , Equinococosis/parasitología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/antagonistas & inhibidores
9.
Eur J Nutr ; 59(6): 2481-2496, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31562532

RESUMEN

PURPOSE: We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). METHODS: Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. RESULTS: COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. CONCLUSION: Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4.


Asunto(s)
Grasas de la Dieta/farmacología , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Dolor Visceral/dietoterapia , Animales , Aceite de Coco/química , Aceite de Coco/farmacología , Diarrea/dietoterapia , Dietoterapia , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Tránsito Gastrointestinal/efectos de los fármacos , Ácidos Linoleicos/química , Ácidos Linoleicos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Oenothera biennis , Aceites de Plantas/química , Aceites de Plantas/farmacología , Ácido gammalinolénico/química , Ácido gammalinolénico/farmacología
10.
Phys Chem Chem Phys ; 22(4): 2262-2275, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31917380

RESUMEN

Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs. In this work, multiple short molecular dynamics (MSMD) simulations followed by binding free energy calculations were performed to investigate the binding selectivity of three inhibitors, namely, 65X, 8KS, and 5M8 toward FABP5 and FABP7. The RMSF analysis suggests that the structural flexibility of FABP5 is stronger than that of FABP7; moreover, the calculated molecular surface area of FABP5 is also larger than that of FABP7. Meanwhile, the results from the cross-correlation analysis show that the inhibitor bindings exert different impacts on the internal dynamics of FABP5 and FABP7. Binding free energies predicted by the molecular mechanics/generalized Born surface area (MM-GBSA) method indicate that the increase in the enthalpy changes caused by the bindings of inhibitors toward FABP7 relative to FABP5 mostly drives the binding selectivity of the inhibitors toward FABP5 versus FABP7. Hierarchical clustering analysis based on the energy contributions of separate residues and calculations of residue-based free energy decompositions were carried out by using the equilibrated MSMD trajectories. The obtained results not only recognize the hot interaction spots of inhibitors with FABP5 and FABP7, but also display that several common residues, namely, (T56, T54), (L60, F58), (E75, E73), (A76, A78), (D79, D77), (R81, R79), (R107, R109), (C120, L118), and (R129, R127) belonging to (FABP5, FABP7) induce obvious binding differences in the inhibitors toward FABP5 and FABP7. Therefore, these residues play significant roles in the binding selectivities of inhibitors toward FABP5 and FABP7.


Asunto(s)
Proteína de Unión a los Ácidos Grasos 7/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Simulación de Dinámica Molecular , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Sitios de Unión , Análisis por Conglomerados , Entropía , Proteína de Unión a los Ácidos Grasos 7/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Enlace de Hidrógeno , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA