Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 17(2): 110-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26790532

RESUMEN

The modification of eukaryotic proteins by isoprenoid lipids, which is known as prenylation, controls the localization and activity of a range of proteins that have crucial functions in biological regulation. The roles of prenylated proteins in cells are well conserved across species, underscoring the biological and evolutionary importance of this lipid modification pathway. Genetic suppression and pharmacological inhibition of the protein prenylation machinery have provided insights into several cellular processes and into the aetiology of diseases in which prenylation is involved. The functional dependence of prenylation substrates, such as RAS proteins, on this modification and the therapeutic potential of targeting the prenylation process in pathological conditions accentuate the need to fully understand this form of post-translational modification.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Prenilación de Proteína , Procesamiento Proteico-Postraduccional , Terpenos/metabolismo , Proteínas ras/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/genética , Animales , Antineoplásicos/farmacología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Neoplasias/prevención & control , Transporte de Proteínas , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
2.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583246

RESUMEN

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Asunto(s)
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Proteolisis/efectos de los fármacos , Estructura Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Endopeptidasas
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34675073

RESUMEN

Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3ß, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Neutrófilos/inmunología , Proteínas Activadoras de ras GTPasa/inmunología , Proteínas ras/antagonistas & inhibidores , Actinas/inmunología , Movimiento Celular , Polaridad Celular , Técnicas de Silenciamiento del Gen , Células HL-60 , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/genética , Activación Neutrófila/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Receptores Acoplados a Proteínas G/inmunología , Complejo Shelterina/inmunología , Transducción de Señal , Proteínas de Unión a Telómeros/inmunología , Proteínas Activadoras de ras GTPasa/deficiencia , Proteínas Activadoras de ras GTPasa/genética , Proteínas ras/inmunología
4.
FASEB J ; 35(5): e21467, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788970

RESUMEN

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/patología , Neuropatías Diabéticas/patología , Óxido Nítrico Sintasa de Tipo III/fisiología , Transcriptoma , Proteínas ras/antagonistas & inhibidores , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Nature ; 537(7618): 112-116, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556948

RESUMEN

Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oncogenes/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/farmacología , Proteínas ras/antagonistas & inhibidores , Alelos , Regulación Alostérica/efectos de los fármacos , Línea Celular , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Moleculares , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
6.
J Biol Chem ; 295(14): 4526-4540, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32086379

RESUMEN

The small GTPases H, K, and NRAS are molecular switches indispensable for proper regulation of cellular proliferation and growth. Several mutations in the genes encoding members of this protein family are associated with cancer and result in aberrant activation of signaling processes caused by a deregulated recruitment of downstream effector proteins. In this study, we engineered variants of the Ras-binding domain (RBD) of the C-Raf proto-oncogene, Ser/Thr kinase (CRAF). These variants bound with high affinity with the effector-binding site of Ras in an active conformation. Structural characterization disclosed how the newly identified RBD mutations cooperate and thereby enhance affinity with the effector-binding site in Ras compared with WT RBD. The engineered RBD variants closely mimicked the interaction mode of naturally occurring Ras effectors and acted as dominant-negative affinity reagents that block Ras signal transduction. Experiments with cancer cells showed that expression of these RBD variants inhibits Ras signaling, reducing cell growth and inducing apoptosis. Using these optimized RBD variants, we stratified patient-derived colorectal cancer organoids with known Ras mutational status according to their response to Ras inhibition. These results revealed that the presence of Ras mutations was insufficient to predict sensitivity to Ras inhibition, suggesting that not all of these tumors required Ras signaling for proliferation. In summary, by engineering the Ras/Raf interface of the CRAF-RBD, we identified potent and selective inhibitors of Ras in its active conformation that outcompete binding of Ras-signaling effectors.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/metabolismo , Apoptosis , Sitios de Unión , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
7.
Mol Cancer ; 20(1): 85, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092233

RESUMEN

BACKGROUND: While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS: Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS: RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS: Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION: NCT01205815 (Sept 17, 2010).


Asunto(s)
Antineoplásicos/farmacología , Antígenos CD40/biosíntesis , Glicina/análogos & derivados , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/patología , Sulfonas/farmacología , Proteínas ras/antagonistas & inhibidores , Animales , Femenino , Glicina/farmacología , Humanos , Masculino , Melanoma/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/antagonistas & inhibidores
8.
Cancer Sci ; 112(10): 4026-4036, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34382720

RESUMEN

Disialoganglioside (GD2)-specific chimeric antigen receptor (CAR)-T cells (GD2-CAR-T cells) have been developed and tested in early clinical trials in patients with relapsed/refractory neuroblastoma. However, the effectiveness of immunotherapy using these cells is limited, and requires improvement. Combined therapy with CAR-T cells and molecular targeted drugs could be a promising strategy to enhance the antitumor efficacy of CAR T cell immunotherapy. Here, we generated GD2-CAR-T cells through piggyBac transposon (PB)-based gene transfer (PB-GD2-CAR-T cells), and analyzed the combined effect of these cells and a MEK inhibitor in vitro and in vivo on neuroblastoma. Trametinib, a MEK inhibitor, ameliorated the killing efficacy of PB-GD2-CAR-T cells in vitro, whereas a combined treatment of the two showed superior antitumor efficacy in a murine xenograft model compared to that of PB-GD2-CAR-T cell monotherapy, regardless of the mutation status of the MAPK pathway in tumor cells. The results presented here provide new insights into the feasibility of combined treatment with CAR-T cells and MEK inhibitors in patients with neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Gangliósidos/uso terapéutico , Inmunoterapia Adoptiva/métodos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neuroblastoma/terapia , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Animales , Línea Celular Tumoral , Terapia Combinada/métodos , Cumarinas/uso terapéutico , Elementos Transponibles de ADN , Resistencia a Antineoplásicos , Femenino , Terapia Genética/métodos , Humanos , Ratones , Ratones SCID , Mutación , Recurrencia Local de Neoplasia/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/antagonistas & inhibidores
9.
Pharmacol Res ; 172: 105806, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450320

RESUMEN

RAS proteins (HRAS, KRAS, NRAS) participate in many physiological signal transduction processes related to cell growth, division, and survival. The RAS proteins are small (188/189 amino acid residues) and they function as GTPases. These proteins toggle between inactive and functional forms; the conversion of inactive RAS-GDP to active RAS-GTP as mediated by guanine nucleotide exchange factors (GEFs) turns the switch on and the intrinsic RAS-GTPase activity stimulated by the GTPase activating proteins (GAPs) turns the switch off. RAS is upstream to the RAS-RAF-MEK-ERK and the PI3-kinase-AKT signaling modules. Importantly, the overall incidence of RAS mutations in all cancers is about 19% and RAS mutants have been a pharmacological target for more than three decades. About 84% of all RAS mutations involve KRAS. Except for the GTP/GDP binding site, the RAS proteins lack other deep surface pockets thereby hindering efforts to identify high-affinity antagonists; thus, they have been considered to be undruggable. KRAS mutations frequently occur in lung, colorectal, and pancreatic cancers, the three most deadly cancers in the United States. Studies within the last decade demonstrated that the covalent modification of KRAS C12, which accounts for about 10% of all RAS mutations, led to the discovery of an adjacent pocket (called the switch II pocket) that accommodated a portion of the drug. This led to the development of sotorasib as a second-line treatment of KRASG12C-mutant non-small cell lung cancer. Considerable effort also has been expended to develop MAP kinase and PI3-kinase pathway inhibitors as indirect RAS antagonists.


Asunto(s)
Proteínas ras , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Bioorg Med Chem Lett ; 53: 128414, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34666187

RESUMEN

S-Palmitoylation is a reversible post-translational lipid modification that regulates protein trafficking and signaling. The enzymatic depalmitoylation of proteins is inhibited by the beta-lactones Palmostatin M and B, which have been found to target several serine hydrolases. In efforts to better understand the mechanism of action of Palmostatin M, we describe herein the synthesis, chemical proteomic analysis, and functional characterization of analogs of this compound. We identify Palmostatin M analogs that maintain inhibitory activity in N-Ras depalmitoylation assays while displaying complementary reactivity across the serine hydrolase class as measured by activity-based protein profiling. Active Palmostatin M analogs inhibit the recently characterized ABHD17 subfamily of depalmitoylating enzymes, while sparing other candidate depalmitoylases such as LYPLA1 and LYPLA2. These findings improve our understanding of the structure-activity relationship of Palmostatin M and refine the set of serine hydrolase targets relevant to the compound's effects on N-Ras palmitoylation dynamics.


Asunto(s)
Lactonas/análisis , Propiolactona/análogos & derivados , Proteómica , Sulfonas/análisis , Proteínas ras/metabolismo , Humanos , Lactonas/metabolismo , Lactonas/farmacología , Estructura Molecular , Propiolactona/análisis , Propiolactona/metabolismo , Propiolactona/farmacología , Sulfonas/metabolismo , Sulfonas/farmacología , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química
11.
J Nanobiotechnology ; 19(1): 177, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118951

RESUMEN

BACKGROUND: Ras activation is a frequent event in hepatocellular carcinoma (HCC). Combining a RAS inhibitor with traditional clinical therapeutics might be hampered by a variety of side effects, thus hindering further clinical translation. Herein, we report on integrating an IR820 nanocapsule-augmented sonodynamic therapy (SDT) with the RAS inhibitor farnesyl-thiosalicylic acid (FTS). Using cellular and tumor models, we demonstrate that combined nanocapsule-augmented SDT with FTS induces an anti-tumor effect, which not only inhibits tumor progression, and enables fluorescence imaging. To dissect the mechanism of a combined tumoricidal therapeutic strategy, we investigated the scRNA-seq transcriptional profiles of an HCC xenograft following treatment. RESULTS: Integrative single-cell analysis identified several clusters that defined many corresponding differentially expressed genes, which provided a global view of cellular heterogeneity in HCC after combined SDT/FTS treatment. We conclude that the combination treatment suppressed HCC, and did so by inhibiting endothelial cells and a modulated immunity. Moreover, hepatic stellate secretes hepatocyte growth factor, which plays a key role in treating SDT combined FTS. By contrast, enrichment analysis estimated the functional roles of differentially expressed genes. The Gene Ontology terms "cadherin binding" and "cell adhesion molecule binding" and KEGG pathway "pathway in cancer" were significantly enriched by differentially expressed genes after combined SDT/FTS therapy. CONCLUSIONS: Thus, some undefined mechanisms were revealed by scRNA-seq analysis. This report provides a novel proof-of-concept for combinatorial HCC-targeted therapeutics that is based on a non-invasive anti-tumor therapeutic strategy and a RAS inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Diatermia/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Análisis de Secuencia de ARN , Proteínas ras/antagonistas & inhibidores , Animales , Carcinoma Hepatocelular/radioterapia , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Células Endoteliales , Farnesol/análogos & derivados , Farnesol/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/radioterapia , Ratones Endogámicos BALB C , Ratones Desnudos , Salicilatos
12.
Int J Neurosci ; 131(10): 975-983, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32378973

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common aggressive primary cancer occurring in the brain tissue. GBM accounts 16% of primary brain tumors and half of gliomas. Additionally, the incidence of GBM is increases with aging, and reaches the peak at the age of 75 to 84 years. The survival of patients with GBM remains at a low level, only less than 5% patients diagnosed with GBM survive for 5 years. Temozolomide (TMZ) is a DNA alkylating agent and is currently a first line chemotherapeutic treatment for GBM. TMZ combined with radiation therapy has been shown to prolong the overall survival (OS) to 14.6 months compared with 12.1 months for radiation therapy alone. NF-E2-related factor 2 (Nrf2) is a transcription factor that contains seven functional domains. The binding of Keap1 to Nrf2 is a central regulator of the cellular defense mechanism against environmental stresses. METHODS: First, Nrf2 overexpression and inhibition models were constructed in U251 cells using transfection. The percentage of viable cells was detected using the MTT assay. Then, the expression of the HO-1 regulator was detected using qPCR, and the concentrations of oxidative stress related factors were detected using ELISAs. The levels of proteins related to oxidative stress and the Ras/Raf/MEK signaling pathway was detected using western blotting analysis. RESULTS: We initially established Nrf2 inhibition and activation cell models in U251 cells and found that the inhibition of Nrf2 expression decreased the mRNA and protein levels of the anti-oxidative enzymes, as well as the secretion of these enzymes into the cellular microenvironment. These effects might be mediated by the inhibition of Ras/Raf/MEK signaling pathway, leading to the inhibition of cellular proliferation. CONCLUSIONS: Inhibition of Nrf2 expression might enhance the effect of TMZ on the treatment of GBM and might be a new therapeutic strategy.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Glioma/tratamiento farmacológico , Quinasas Quinasa Quinasa PAM/efectos de los fármacos , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Temozolomida/farmacología , Quinasas raf/efectos de los fármacos , Proteínas ras/efectos de los fármacos , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Quinasas raf/antagonistas & inhibidores , Proteínas ras/antagonistas & inhibidores
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830283

RESUMEN

RAS (rat sarcoma virus) mutant cancers remain difficult to treat despite the advances in targeted therapy and immunotherapy. Targeted therapies against the components of mitogen-activated protein kinase (MAPK) pathways, including RAS, RAF, MEK, and ERK, have demonstrated activity in BRAF mutant and, in limited cases, RAS mutant cancer. RAS mutant cancers have been found to activate adaptive resistance mechanisms such as autophagy during MAPK inhibition. Here, we review the recent clinically relevant advances in the development of the MAPK pathway and autophagy inhibitors and focus on their application to RAS mutant cancers. We provide analysis of the preclinical rationale for combining the MAPK pathway and autophagy and highlight the most recent clinical trials that have been launched to capitalize on this potentially synthetic lethal approach to cancer therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia Combinada/métodos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Resultado del Tratamiento , Proteínas ras/metabolismo
14.
Angew Chem Int Ed Engl ; 60(12): 6567-6572, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33427372

RESUMEN

Cyclorasins 9A5 and 9A54 are 11-mer cyclic peptides that inhibit the Ras-Raf protein interaction. The peptides share a cell-penetrating peptide (CPP)-like motif; however, only cyclorasin 9A5 can permeabilize cells to exhibit strong cell-based activity. To unveil the structural origin underlying their distinct cellular permeabilization activities, we compared the three-dimensional structures of cyclorasins 9A5 and 9A54 in water and in the less polar solvent dimethyl sulfoxide (DMSO) by solution NMR. We found that cyclorasin 9A5 changes its extended conformation in water to a compact amphipathic structure with converged aromatic residues surrounded by Arg residues in DMSO, which might contribute to its cell permeabilization activity. However, cyclorasin 9A54 cannot adopt this amphipathic structure, due to the steric hindrance between two neighboring bulky amino-acid sidechains, Tle-2 and dVal-3. We also found that the bulkiness of the sidechains at positions 2 and 3 negatively affects the cell permeabilization activities, indicating that the conformational plasticity that allows the peptides to form the amphipathic structure is important for their cell permeabilization activities.


Asunto(s)
Péptidos Cíclicos/farmacología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/antagonistas & inhibidores , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Conformación Proteica , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
15.
Semin Cancer Biol ; 54: 162-173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29518522

RESUMEN

RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Proteínas Portadoras , Descubrimiento de Drogas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Transporte de Proteínas , Biología de Sistemas/métodos , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química
16.
Semin Cancer Biol ; 54: 101-108, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29170065

RESUMEN

Pancreatic cancer is considered among the most aggressive and the least curable of all human malignancies. It is usually characterized by multiple aberrations in tumor suppressor genes and oncogenes, most notably activating mutations in KRAS. This review examines the various attempts that have been made to inhibit Kras and its downstream signaling pathways in pancreatic cancer with an emphasis on challenges related to clinical trials. Attempts include preventing the localization of Ras protein to the plasma membrane, inhibiting downstream oncogenic signaling by targeting Kras effectors such as MEK1/2, Erk1/2 or Akt singly or in combination, and directly inhibiting Kras protein. Most clinical trials have focused on inhibiting downstream effector pathways and clinical benefit has been limited due to compensatory mechanisms and toxicity associated with small therapeutic windows. Additionally, genetic screens have been conducted to identify gene or genes that could provide therapeutic vulnerabilities in mutant KRAS cells and provide a way to target mutant Kras protein only. We also discuss how potentially transforming clinical trials have failed in the past and what new strategies are on-going in clinical trials for pancreas cancer. For long-term success in targeting Kras, future efforts should focus on combinatorial strategies to more effectively block Kras pathways at multiple points, and improve translational application of pre-clinical data to the clinic.


Asunto(s)
Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Oncogenes , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas ras/antagonistas & inhibidores
17.
Semin Cancer Biol ; 54: 121-130, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29203271

RESUMEN

For decades oncogenic RAS proteins were considered undruggable due to a lack of accessible binding pockets on the protein surfaces. Seminal early research in RAS biology uncovered the basic paradigm of post-translational isoprenylation of RAS polypeptides, typically with covalent attachment of a farnesyl group, leading to isoprenyl-mediated RAS anchorage at the plasma membrane and signal initiation at those sites. However, the failure of farnesyltransferase inhibitors to translate to the clinic stymied anti-RAS therapy development. Over the past ten years, a more complete picture has emerged of RAS protein maturation, intracellular trafficking, and location, positioning and retention in subdomains at the plasma membrane, with a corresponding expansion in our understanding of how these properties of RAS contribute to signal outputs. Each of these aspects of RAS regulation presents a potential vulnerability in RAS function that may be exploited for therapeutic targeting, and inhibitors have been identified or developed that interfere with RAS for nearly all of them. This review will summarize current understanding of RAS membrane targeting with a focus on highlighting development and outcomes of inhibitors at each step.


Asunto(s)
Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Membrana Celular/efectos de los fármacos , Galectinas/metabolismo , Humanos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica , Proteolisis , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química , Proteínas ras/genética
18.
Semin Cancer Biol ; 54: 138-148, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29248537

RESUMEN

RAS GTPases (H-, K-, and N-RAS) are the most frequently mutated oncoprotein family in human cancer. However, the relatively smooth surface architecture of RAS and its picomolar affinity for nucleotide have given rise to the assumption that RAS is an "undruggable" target. Recent advancements in drug screening, molecular modeling, and a greater understanding of RAS function have led to a resurgence in efforts to pharmacologically target this challenging foe. This review focuses on the state of the art of RAS inhibition, the approaches taken to achieve this goal, and the challenges of translating these discoveries into viable therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Terapia Molecular Dirigida , Familia de Multigenes , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Multimerización de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Proteínas ras/química , Proteínas ras/genética
19.
Semin Cancer Biol ; 54: 91-100, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29409706

RESUMEN

Ras proteins are among the most frequently mutated drivers in human cancer and remain an elusive pharmaceutical targeting. Previous studies have improved the understanding of Ras structure, processing, and signaling pathways in cancer cells and have opened new possibilities for inhibiting Ras function. In this review we discuss the most recent advances towards inhibiting Ras activity with small molecules, highlighting the two approaches: (i) compounds that bind directly to Ras protein and (ii) inhibitors of the enzymes involved in the post-translational modifications of Ras. In the former, we analyze the most recent contributions in each of the main classes of Ras direct binders, including the different types of nucleotide exchange inhibitors, allosteric compounds, and molecules that interfere with the interaction between Ras and its effectors. In the latter, we examine the compounds that inhibit Ras activation by blocking any of its post-translational modifications. Also, a special focus is made on those molecules that have progressed the farthest from medicinal chemistry and drug development points of view. Finally, the current scene regarding the clinical trials of Ras inhibitors, together with the future promising avenues for further development of the challenging Ras field are reviewed.


Asunto(s)
Neoplasias/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Humanos , Terapia Molecular Dirigida , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Resultado del Tratamiento , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química , Proteínas ras/genética
20.
Semin Cancer Biol ; 54: 29-39, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29621614

RESUMEN

Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.


Asunto(s)
Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Animales , Biomarcadores de Tumor , Adhesión Celular/genética , Metabolismo Energético , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Integrinas/genética , Integrinas/metabolismo , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rap1/antagonistas & inhibidores , Proteínas de Unión al GTP rap1/genética , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA