Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.061
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Sports Med ; 45(12): 884-896, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029513

RESUMEN

A strict correlation among proximal tubule epithelial cell dysfunction, proteinuria, and modulation of the Renin-Angiotensin System and Kalikrein-Kinin System are crucial factors in the pathogenesis of Acute Kidney Injury (AKI). In this study, we investigated the potential protective effect of preconditioning by moderate-intensity aerobic exercise on gentamicin-induced AKI. Male Wistar rats were submitted to a moderate-intensity treadmill exercise protocol for 8 weeks, and then injected with 80 mg/kg/day s.c. gentamicin for 5 consecutive days. Four groups were generated: 1) NT+SAL (control); 2) NT+AKI (non-trained with AKI); 3) T+SAL (trained); and 4) T+AKI (trained with AKI). The NT+AKI group presented: 1) impairment in glomerular function parameters; 2) increased fractional excretion of Na + , K + , and water; 4) proteinuria and increased urinary γ-glutamyl transferase activity (a marker of tubular injury) accompanied by acute tubular necrosis; 5) an increased renal angiotensin-converting enzyme and bradykinin B1 receptor mRNA expression. Interestingly, the preconditioning by moderate-intensity aerobic exercise attenuated all alterations observed in gentamicin-induced AKI (T+AKI group). Taken together, our results show that the preconditioning by moderate-intensity aerobic exercise ameliorates the development of gentamicin-induced AKI. Our findings help to expand the current knowledge regarding the effect of physical exercise on kidneys during physiological and pathological conditions.


Asunto(s)
Lesión Renal Aguda , Gentamicinas , Condicionamiento Físico Animal , Ratas Wistar , Gentamicinas/efectos adversos , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Masculino , Condicionamiento Físico Animal/fisiología , Proteinuria/prevención & control , Ratas , gamma-Glutamiltransferasa/metabolismo
2.
Am J Physiol Renal Physiol ; 325(3): F363-F376, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498548

RESUMEN

Prepubertal obesity is currently an epidemic and is considered as a major risk factor for renal injury. Previous studies have demonstrated that insulin resistance contributes to renal injury in obesity, independent of diabetes. However, studies examining the relationship between insulin resistance and renal injury in obese children are lacking. Recently, we reported that progressive renal injury in Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rats was associated with insulin resistance before puberty. Therefore, the aim of the present study was to examine whether decreasing insulin resistance with metformin will reduce renal injury in SSLepRmutant rats. Four-wk-old SS and SSLepRmutant rats were separated into the following two groups: 1) vehicle and 2) metformin (300 mg/kg/day) via chow diet for 4 wk. Chronic administration of metformin markedly reduced insulin resistance and dyslipidemia in SSLepRmutant rats. We did not detect any differences in mean arterial pressure between vehicle and metformin-treated SS and SSLepRmutant rats. Proteinuria was significantly greater in SSLepRmutant rats versus SS rats throughout the study, and metformin administration significantly reduced proteinuria in SSLepRmutant rats. At the end of the protocol, metformin prevented the renal hyperfiltration observed in SSLepRmutant rats versus SS rats. Glomerular and tubular injury and renal inflammation and fibrosis were significantly higher in vehicle-treated SSLepRmutant rats versus SS rats, and metformin reduced these parameters in SSLepRmutant rats. These data suggest that reducing insulin resistance with metformin prevents renal hyperfiltration and progressive renal injury in SSLepRmutant rats before puberty and may be therapeutically useful in managing renal injury during prepubertal obesity.NEW & NOTEWORTHY Childhood/prepubertal obesity is a public health concern that is associated with early signs of proteinuria. Insulin resistance has been described in obese children. However, studies investigating the role of insulin resistance during childhood obesity-associated renal injury are limited. This study provides evidence of an early relationship between insulin resistance and renal injury in a rat model of prepubertal obesity. These data also suggest that reducing insulin resistance with metformin may be renoprotective in obese children.


Asunto(s)
Hipertensión , Resistencia a la Insulina , Metformina , Obesidad Infantil , Ratas , Animales , Ratas Endogámicas Dahl , Metformina/farmacología , Obesidad Infantil/complicaciones , Riñón , Proteinuria/prevención & control , Cloruro de Sodio Dietético , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Presión Sanguínea
3.
Am J Physiol Renal Physiol ; 324(2): F168-F178, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454699

RESUMEN

Nephrotic syndrome, characterized by proteinuria and hypoalbuminemia, results from the dysregulation of glomerular podocytes and is a significant cause of end-stage kidney disease. Patients with idiopathic nephrotic syndrome are generally treated with immunosuppressive agents; however, these agents produce various adverse effects. Previously, we reported the renoprotective effects of a stimulator of the mitochondrial ATP-dependent K+ channel (MitKATP), nicorandil, in a remnant kidney model. Nonetheless, the cellular targets of these effects remain unknown. Here, we examined the effect of nicorandil on puromycin aminonucleoside-induced nephrosis (PAN) rats, a well-established model of podocyte injury and human nephrotic syndrome. PAN was induced using a single intraperitoneal injection. Nicorandil was administered orally at 30 mg/kg/day. We found that proteinuria and hypoalbuminemia in PAN rats were significantly ameliorated following nicorandil treatment. Immunostaining and ultrastructural analysis under electron microscopy demonstrated that podocyte injury in PAN rats showed a significant partial attenuation following nicorandil treatment. Nicorandil ameliorated the increase in the oxidative stress markers nitrotyrosine and 8-hydroxy-2-deoxyguanosine in glomeruli. Conversely, nicorandil prevented the decrease in levels of the antioxidant enzyme manganese superoxide dismutase in PAN rats. We found that mitochondrial Ca2+ uniporter levels in glomeruli were higher in PAN rats than in control rats, and this increase was significantly attenuated by nicorandil. We conclude that stimulation of MitKATP by nicorandil reduces proteinuria by attenuating podocyte injury in PAN nephrosis, which restores mitochondrial antioxidative capacity, possibly through mitochondrial Ca2+ uniporter modulation. These data indicate that MitKATP may represent a novel target for podocyte injury and nephrotic syndrome.NEW & NOTEWORTHY Our findings suggest that the mitochondrial Ca2+ uniporter may be an upstream regulator of manganese superoxide dismutase and indicate a biochemical basis for the interaction between the ATP-sensitive K+ channel and Ca2+ signaling. We believe that our study makes a significant contribution to the literature because our results indicate that the ATP-sensitive K+ channel may be a potential therapeutic target for podocyte injury and nephrotic syndrome.


Asunto(s)
Hipoalbuminemia , Nefrosis , Síndrome Nefrótico , Nicorandil , Podocitos , Animales , Ratas , Adenosina Trifosfato/metabolismo , Antioxidantes/metabolismo , Nefrosis/inducido químicamente , Nefrosis/prevención & control , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/prevención & control , Nicorandil/uso terapéutico , Proteinuria/inducido químicamente , Proteinuria/prevención & control , Puromicina Aminonucleósido/toxicidad , Superóxido Dismutasa
4.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894725

RESUMEN

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Asunto(s)
Glomerulonefritis/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Doxorrubicina , Glomerulonefritis/inducido químicamente , Glomerulonefritis/patología , Glomerulonefritis/prevención & control , Humanos , Interleucina-1beta/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Noqueados , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/patología , Proteinuria/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transducción de Señal
5.
Kidney Int ; 102(1): 96-107, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341792

RESUMEN

Activation of canonical Wnt signaling has been implicated in podocyte injury and proteinuria. As Wnts are secreted proteins, whether Wnts derived from podocytes are obligatory for promoting proteinuria remains unknown. To address this, we generated conditional knockout mice where Wntless, a cargo receptor protein required for Wnt secretion, was specifically deleted in glomerular podocytes. Mice with podocyte-specific ablation of Wntless (Podo-Wntless-/-) were phenotypically normal. However, after inducing kidney damage with Adriamycin for six days, Podo-Wntless-/- mice developed more severe podocyte injury and albuminuria than their control littermates. Surprisingly, ablation of Wntless resulted in upregulation of ß-catenin, accompanied by reduction of nephrin, podocin, podocalyxin, and Wilms tumor 1 proteins. In chronic injury induced by Adriamycin, increased albuminuria, aggravated podocyte lesions and extracellular matrix deposition were evident in Podo-Wntlessl-/- mice, compared to wild type mice. Mechanistically, specific ablation of Wntless in podocytes caused down-regulation of the nuclear factor of activated T cell 1 (NFAT1) and Nemo-like kinase (NLK), key downstream mediators of non-canonical Wnt/calcium signaling. In vitro, knockdown of either NFAT1 or NLK induced ß-catenin activation while overexpression of NLK significantly repressed ß-catenin induction and largely preserved nephrin in glomerular podocytes. Thus, our results indicate that podocyte-derived Wnts play an important role in protecting podocytes from injury by repressing ß-catenin via activating non-canonical Wnt/calcium signaling.


Asunto(s)
Enfermedades Renales , Podocitos , beta Catenina , Albuminuria/genética , Albuminuria/metabolismo , Albuminuria/prevención & control , Animales , Calcio/metabolismo , Señalización del Calcio , Doxorrubicina/toxicidad , Enfermedades Renales/patología , Ratones , Podocitos/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/prevención & control , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
6.
Am J Physiol Renal Physiol ; 320(3): F285-F296, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346727

RESUMEN

This study investigated the molecular mechanisms underlying the antiproteinuric effect of DPP4 inhibition in 5/6 renal ablation rats and tested the hypothesis that the urinary activity of DPP4 correlates with chronic kidney disease (CKD) progression. Experiments were conducted in male Wistar rats who underwent 5/6 nephrectomy (Nx) or sham operation followed by 8 wk of treatment with the DPP4 inhibitor (DPP4i) sitagliptin or vehicle. Proteinuria increased progressively in Nx rats throughout the observation period. This increase was remarkably mitigated by sitagliptin. Higher levels of proteinuria in Nx rats compared to control rats were accompanied by higher urinary excretion of retinol-binding protein 4, a marker of tubular proteinuria, as well as higher urinary levels of podocin, a marker of glomerular proteinuria. Retinol-binding protein 4 and podocin were not detected in the urine of Nx + DPP4i rats. Tubular and glomerular proteinuria was associated with the reduced expression of megalin and podocin in the renal cortex of Nx rats. Sitagliptin treatment partially prevented this decrease. Besides, the angiotensin II renal content was significantly reduced in the Nx rats that received sitagliptin compared to vehicle-treated Nx rats. Interestingly, both urinary DPP4 activity and abundance increased progressively in Nx rats. Additionally, urinary DPP4 activity correlated positively with serum creatinine levels, proteinuria, and blood pressure. Collectively, these results suggest that DPP4 inhibition ameliorated both tubular and glomerular proteinuria and prevented the reduction of megalin and podocin expression in CKD rats. Furthermore, these findings suggest that urinary DPP4 activity may serve as a biomarker of renal disease and progression.


Asunto(s)
Dipeptidil Peptidasa 4/orina , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/efectos de los fármacos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas de la Membrana/metabolismo , Proteinuria/prevención & control , Insuficiencia Renal Crónica/prevención & control , Fosfato de Sitagliptina/farmacología , Angiotensina II/metabolismo , Animales , Biomarcadores/orina , Modelos Animales de Enfermedad , Fibrosis , Riñón/enzimología , Riñón/patología , Masculino , Proteinuria/enzimología , Proteinuria/patología , Proteinuria/orina , Ratas Wistar , Insuficiencia Renal Crónica/enzimología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Proteínas Plasmáticas de Unión al Retinol/orina , Transducción de Señal
7.
Br J Haematol ; 193(1): 113-118, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32829529

RESUMEN

Treatment of the plasma cell clone in monoclonal gammopathy of renal significance (MGRS) is necessary in order to reduce toxic immunoglobulin load to the kidneys and salvage renal function. There are limited data on the use of daratumumab in patients with MGRS. We summarize our experience with the use of daratumumab-based therapy in 25 MGRS patients, 12 of whom were previously untreated. The median follow-up of the cohort is 14 months. The best overall haematologic response in evaluable patients was complete response (CR) in five (22%), very good partial response (VGPR) in five (22%) and partial response (PR) in seven (30%) patients for an overall response rate of 74%. Two of five patients in CR and two patients with initially detectable clones, but non-measurable immunoglobulins, had undetectable minimal residual disease (MRD) with next-generation flow cytometry (NGF) after therapy. Haematologic response rate for previously untreated patients was 83% vs. 69% for previously treated and for daratumumab combinations it was 91% vs. 64%, and with CR/VGPR 82% vs. 29%, compared to daratumumab monotherapy. At six months, 12/22 (55%) patients not on dialysis achieved a reduction of proteinuria >30%, of at least 0·5 g/24 h, without an estimated glomerular filtration rate (eGFR) reduction. The toxicity was mild and predictable. In conclusion, daratumumab-based therapy is a new option for patients with MGRS.


Asunto(s)
ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Anticuerpos Monoclonales/uso terapéutico , Inmunoglobulinas/toxicidad , Enfermedades Renales/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Paraproteinemias/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Inmunoglobulinas/efectos de los fármacos , Enfermedades Renales/diagnóstico , Enfermedades Renales/etiología , Enfermedades Renales/fisiopatología , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Paraproteinemias/complicaciones , Proteinuria/prevención & control
8.
Am J Pathol ; 190(4): 799-816, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32220420

RESUMEN

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.


Asunto(s)
Enfermedades Renales/prevención & control , Glomérulos Renales/citología , Podocitos/citología , Sustancias Protectoras/metabolismo , Receptores Inmunológicos/deficiencia , Adulto , Animales , Femenino , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/metabolismo , Proteinuria/metabolismo , Proteinuria/patología , Proteinuria/prevención & control , Ratas
9.
Am J Nephrol ; 52(6): 435-449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34233330

RESUMEN

BACKGROUND: Although diuretics are one of the most widely used drugs by nephrologists, their antiproteinuric properties are not generally taken into consideration. SUMMARY: Thiazide diuretics have been shown to reduce proteinuria by >35% in several prospective controlled studies, and these values are markedly increased when combined with a low-salt diet. Thiazide-like diuretics (indapamide and chlorthalidone) have shown similar effectiveness. The antiproteinuric effect of mineralocorticoid receptor antagonists (spironolactone, eplerenone, and finerenone) has been clearly established through prospective and controlled studies, and treatment with finerenone reduces the risk of chronic kidney disease progression in type-2 diabetic patients. The efficacy of other diuretics such as amiloride, triamterene, acetazolamide, or loop diuretics has been less explored, but different investigations suggest that they might share the same antiproteinuric properties of other diuretics that should be evaluated through controlled studies. Although the inclusion of sodium-glucose cotransporter-2 inhibitors (SGLT2i) among diuretics is a controversial issue, their renoprotective and cardioprotective properties, confirmed in various landmark trials, constitute a true revolution in the treatment of patients with kidney disease. Recent subanalyses of these trials have shown that the early antiproteinuric effect induced by SGLT2i predicts long-term preservation of kidney function. Key Message: Whether the early reduction in proteinuria induced by diuretics other than finerenone and SGLT2i, as summarized in this review, also translates into long-term renoprotection requires further prospective and observational studies. In any case, it is important for the clinician to be aware of the antiproteinuric properties of drugs so often used in daily clinical practice.


Asunto(s)
Dieta Hiposódica , Diuréticos/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Proteinuria/dietoterapia , Proteinuria/tratamiento farmacológico , Tiazidas/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Clortalidona/uso terapéutico , Terapia Combinada , Diuresis/efectos de los fármacos , Diuréticos/farmacología , Humanos , Hipertensión/tratamiento farmacológico , Indapamida/uso terapéutico , Natriuresis/efectos de los fármacos , Proteinuria/prevención & control , Simportadores del Cloruro de Sodio/efectos de los fármacos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Tiazidas/farmacología
10.
Nephrol Dial Transplant ; 36(3): 430-441, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33097961

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a common cause of morbidity and mortality in human immunodeficiency virus (HIV)-positive individuals. Among the HIV-related kidney diseases, HIV-associated nephropathy (HIVAN) is a rapidly progressive renal disease characterized by collapsing focal glomerulosclerosis (GS), microcystic tubular dilation, interstitial inflammation and fibrosis. Although the incidence of end-stage renal disease due to HIVAN has dramatically decreased with the widespread use of antiretroviral therapy, the prevalence of CKD continues to increase in HIV-positive individuals. Recent studies have highlighted the role of apoptosis signal-regulating kinase 1 (ASK1) in driving kidney disease progression through the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase and selective ASK-1 inhibitor GS-444217 was recently shown to reduce kidney injury and disease progression in various experimental models. Therefore we examined the efficacy of ASK1 antagonism by GS-444217 in the attenuation of HIVAN in Tg26 mice. METHODS: GS-444217-supplemented rodent chow was administered in Tg26 mice at 4 weeks of age when mild GS and proteinuria were already established. After 6 weeks of treatment, the kidney function assessment and histological analyses were performed and compared between age- and gender-matched control Tg26 and GS-444217-treated Tg26 mice. RESULTS: GS-444217 attenuated the development of GS, podocyte loss, tubular injury, interstitial inflammation and renal fibrosis in Tg26 mice. These improvements were accompanied by a marked reduction in albuminuria and improved renal function. Taken together, GS-4442217 attenuated the full spectrum of HIVAN pathology in Tg26 mice. CONCLUSIONS: ASK1 signaling cascade is central to the development of HIVAN in Tg26 mice. Our results suggest that the select inhibition of ASK1 could be a potential adjunctive therapy for the treatment of HIVAN.


Asunto(s)
Nefropatía Asociada a SIDA/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibrosis/prevención & control , Inflamación/prevención & control , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteinuria/prevención & control , Nefropatía Asociada a SIDA/metabolismo , Nefropatía Asociada a SIDA/patología , Animales , Ratones , Ratones Transgénicos
11.
Xenotransplantation ; 28(6): e12708, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418164

RESUMEN

BACKGROUND: Nephrotic syndrome is a common complication of pig-to-baboon kidney xenotransplantation (KXTx) that adversely affects outcomes. We have reported that upregulation of CD80 and down-regulation of SMPDL-3b in glomeruli have an important role in the development of proteinuria following pig-to-baboon KXTx. Recently we found induced expression of human CD47 (hCD47) on endothelial cells and podocytes isolated from hCD47 transgenic (Tg) swine markedly reduced phagocytosis by baboon and human macrophages. These observations led us to hypothesize that transplanting hCD47 Tg porcine kidneys could overcome the incompatibility of the porcine CD47-baboon SIRPα interspecies ligand-receptor interaction and prevent the development of proteinuria following KXTx. METHODS: Ten baboons received pig kidneys with vascularized thymic grafts (n = 8) or intra-bone bone marrow transplants (n = 2). Baboons were divided into three groups (A, B, and C) based on the transgenic expression of hCD47 in GalT-KO pigs. Baboons in Group A received kidney grafts with expression of hCD47 restricted to glomerular cells (n = 2). Baboons in Group B received kidney grafts with high expression of hCD47 on both glomerular and tubular cells of the kidneys (n = 4). Baboons in Group C received kidney grafts with low/no glomerular expression of hCD47, and high expression of hCD47 on renal tubular cells (n = 4). RESULTS: Consistent with this hypothesis, GalT-KO/hCD47 kidney grafts with high expression of hCD47 on glomerular cells developed minimal proteinuria. However, high hCD47 expression in all renal cells including renal tubular cells induced an apparent destructive inflammatory response associated with upregulated thrombospondin-1. This response could be avoided by a short course of weekly anti-IL6R antibody administration, resulting in prolonged survival without proteinuria (mean 170.5 days from 47.8 days). CONCLUSION: Data showed that transgenic expression of hCD47 on glomerular cells in the GalT-KO donor kidneys can prevent xenograft nephropathy, a significant barrier for therapeutic applications of xenotransplantation. The ability to prevent nephrotic syndrome following KXTx overcomes a critical barrier for future clinical applications of KXTx.


Asunto(s)
Antígeno CD47 , Supervivencia de Injerto , Animales , Animales Modificados Genéticamente , Antígeno CD47/genética , Células Endoteliales , Rechazo de Injerto/prevención & control , Humanos , Papio , Proteinuria/prevención & control , Porcinos , Trasplante Heterólogo
12.
Br J Nutr ; 126(7): 1040-1047, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33308359

RESUMEN

We aimed to examine whether baseline neutrophil counts affected the risk of new-onset proteinuria in hypertensive patients, and, if so, whether folic acid treatment is particularly effective in proteinuria prevention in such a setting. A total of 8208 eligible participants without proteinuria at baseline were analysed from the renal substudy of the China Stroke Primary Prevention Trial. Participants were randomised to receive a double-blind daily treatment of 10 mg of enalapril and 0·8 mg of folic acid (n 4101) or 10 mg of enalapril only (n 4107). The primary outcome was new-onset proteinuria, defined as a urine dipstick reading of ≥1+ at the exit visit. The mean age of the participants was 59·5 (sd, 7·4) years, 3088 (37·6 %) of the participants were male. The median treatment duration was 4·4 years. In the enalapril-only group, a significantly higher risk of new-onset proteinuria was found among participants with higher neutrophil counts (quintile 5; ≥4·8 × 109/l, OR 1·44; 95 % CI 1·00, 2·06), compared with those in quintiles 1-4. For those with enalapril and folic acid treatment, compared with the enalapril-only group, the new-onset proteinuria risk was reduced from 5·2 to 2·8 % (OR 0·49; 95 % CI 0·29, 0·82) among participants with higher neutrophil counts (≥4·8 × 109/l), whereas there was no significant effect among those with neutrophil counts <4·8 × 109/l. In summary, among hypertensive patients, those with higher neutrophil counts had increased risk of new-onset proteinuria, and this risk was reduced by 51 % with folic acid treatment.


Asunto(s)
Enalapril , Ácido Fólico , Hipertensión , Neutrófilos/citología , Proteinuria/prevención & control , Anciano , Antihipertensivos/uso terapéutico , Método Doble Ciego , Enalapril/uso terapéutico , Femenino , Ácido Fólico/uso terapéutico , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Recuento de Leucocitos , Masculino , Persona de Mediana Edad
13.
J Pharmacol Sci ; 145(1): 79-87, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33357783

RESUMEN

In the present study, we investigated the renoprotective effects of long-term treatment with yohimbine, an α2-adrenoceptor inhibitor, in a 5/6 nephrectomy-induced chronic kidney disease (CKD) rat model. Male Sprague-Dawley rats were randomly allocated into the following groups: sham-operated, 5/6-nephrectomized (5/6 Nx), 5/6 Nx + low or high dose of yohimbine (0.3 or 3.0 mg/L in drinking water, respectively), and 5/6 Nx + hydralazine (250 mg/L in drinking water). The 5/6 Nx group presented with renal dysfunction, hypertension, noradrenaline overproduction, and histopathological injuries. Blood pressure decreased in both the yohimbine- and hydralazine-treated groups. Treatment with high dose of yohimbine, but not hydralazine, apparently attenuated urinary protein excretion and noradrenaline concentration of renal venous plasma. Renal fibrosis and upregulated fibrosis-related gene expression were suppressed by high dose of yohimbine. Furthermore, yohimbine, but not hydralazine, treatment ameliorated the urinary concentration ability. These findings suggest that long-term yohimbine treatment can be a useful therapeutic option to prevent the progression of CKD.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Nefrectomía/efectos adversos , Insuficiencia Renal Crónica/prevención & control , Yohimbina/administración & dosificación , Animales , Vesícula/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epidermólisis Ampollosa/patología , Fibrosis , Hidralazina/administración & dosificación , Masculino , Norepinefrina/metabolismo , Enfermedades Periodontales/patología , Trastornos por Fotosensibilidad/patología , Proteinuria/etiología , Proteinuria/prevención & control , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología
14.
J Oncol Pharm Pract ; 27(4): 902-906, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32715917

RESUMEN

PURPOSE: Proteinuria monitoring is required for patients receiving bevacizumab. Nonetheless, the frequency of monitoring is not specified in the package insert. A 2014 quality improvement study performed at Yale New Haven Health System (YNHHS) found that proteinuria occurred in 15% (all grade) of the 162 patients evaluated. These results led to decreasing the frequency of proteinuria monitoring from every treatment to every other treatment. The objective of this study is to assess the safety of the extended interval for urine protein (UP) monitoring. METHODS: Patients receiving at least four bevacizumab treatments at YNHHS from January to June 2017 were randomly selected and retrospectively reviewed. The following data were collected: baseline patient characteristics, comorbidities, medication history, and proteinuria monitoring. The grade, prevalence and management of proteinuria were evaluated. The minimum necessary sample size was determined to be 384 treatments to achieve a 95% confidence interval. RESULTS: Fifty-five patients and 388 bevacizumab treatments were evaluated. Urine protein was assessed in 52.5% of treatments. The incidence of proteinuria among patients was 7.2% (grade 2) and 0% (grade 3). Cumulative dose and the number of total bevacizumab doses did not affect the timing for onset or severity of proteinuria. Two patients with UP ≥ 2+ were further monitored using a 24-h urine collection test with negative results. No treatments were held due to proteinuria. CONCLUSION: Monitoring proteinuria every other treatment does not increase the frequency of adverse events. Urine protein is now monitored prior to every third bevacizumab treatment, reducing unnecessary labs and chair time.


Asunto(s)
Inhibidores de la Angiogénesis/efectos adversos , Bevacizumab/efectos adversos , Monitoreo de Drogas/métodos , Proteinuria/inducido químicamente , Proteinuria/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/uso terapéutico , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Proteinuria/prevención & control , Mejoramiento de la Calidad , Estudios Retrospectivos , Resultado del Tratamiento
15.
J Am Soc Nephrol ; 31(8): 1796-1814, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641396

RESUMEN

BACKGROUND: The mechanisms balancing proteostasis in glomerular cells are unknown. Mucolipidosis (ML) II and III are rare lysosomal storage disorders associated with mutations of the Golgi-resident GlcNAc-1-phosphotransferase, which generates mannose 6-phosphate residues on lysosomal enzymes. Without this modification, lysosomal enzymes are missorted to the extracellular space, which results in lysosomal dysfunction of many cell types. Patients with MLII present with severe skeletal abnormalities, multisystemic symptoms, and early death; the clinical course in MLIII is less progressive. Despite dysfunction of a major degradative pathway, renal and glomerular involvement is rarely reported, suggesting organ-specific compensatory mechanisms. METHODS: MLII mice were generated and compared with an established MLIII model to investigate the balance of protein synthesis and degradation, which reflects glomerular integrity. Proteinuria was assessed in patients. High-resolution confocal microscopy and functional assays identified proteins to deduce compensatory modes of balancing proteostasis. RESULTS: Patients with MLII but not MLIII exhibited microalbuminuria. MLII mice showed lysosomal enzyme missorting and several skeletal alterations, indicating that they are a useful model. In glomeruli, both MLII and MLIII mice exhibited reduced levels of lysosomal enzymes and enlarged lysosomes with abnormal storage material. Nevertheless, neither model had detectable morphologic or functional glomerular alterations. The models rebalance proteostasis in two ways: MLII mice downregulate protein translation and increase the integrated stress response, whereas MLIII mice upregulate the proteasome system in their glomeruli. Both MLII and MLIII downregulate the protein complex mTORC1 (mammalian target of rapamycin complex 1) signaling, which decreases protein synthesis. CONCLUSIONS: Severe lysosomal dysfunction leads to microalbuminuria in some patients with mucolipidosis. Mouse models indicate distinct compensatory pathways that balance proteostasis in MLII and MLIII.


Asunto(s)
Glomérulos Renales/metabolismo , Mucolipidosis/metabolismo , Proteinuria/prevención & control , Proteostasis/fisiología , Albuminuria/etiología , Animales , Nitrógeno de la Urea Sanguínea , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mucolipidosis/complicaciones , Complejo de la Endopetidasa Proteasomal/fisiología
16.
Am J Physiol Renal Physiol ; 318(5): F1295-F1305, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32249614

RESUMEN

Podocyte loss and proteinuria are both key features of human diabetic nephropathy (DN). The leptin-deficient BTBR mouse strain with the ob/ob mutation develops progressive weight gain, type 2 diabetes, and diabetic nephropathy that has many features of advanced human DN, including increased mesangial matrix, mesangiolysis, podocyte loss, and proteinuria. Selective antagonism of the endothelin-1 type A receptor (ETAR) by atrasentan treatment in combination with renin-angiotensin-aldosterone system inhibition with losartan has been shown to have the therapeutic benefit of lowering proteinuria in patients with DN, but the underlying mechanism for this benefit is not well understood. Using a similar therapeutic approach in diabetic BTBR ob/ob mice, this treatment regimen significantly increased glomerular podocyte number compared with diabetic BTBR ob/ob controls and suggested that parietal epithelial cells were a source for podocyte restoration. Atrasentan treatment alone also increased podocyte number but to a lesser degree. Mice treated with atrasentan demonstrated a reduction in proteinuria, matching the functional improvement reported in humans. This is a first demonstration that treatment with the highly selective ETAR antagonist atrasentan can lead to restoration of the diminished podocyte number characteristic of DN in humans and thereby underlies the reduction in proteinuria in patients with diabetes undergoing similar treatment. The benefit of ETAR antagonism in DN extended to a decrease in mesangial matrix as measured by a reduction in accumulations of collagen type IV in both the atrasentan and atrasentan + losartan-treated groups compared with untreated controls.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Atrasentán/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Antagonistas de los Receptores de la Endotelina A/farmacología , Losartán/farmacología , Podocitos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Ratones , Fosforilación , Podocitos/metabolismo , Podocitos/patología , Proteinuria/metabolismo , Proteinuria/patología , Proteinuria/prevención & control , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
17.
Kidney Int ; 98(2): 391-403, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32622525

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a common cause of steroid-resistant nephrotic syndrome. Spontaneous remission of FSGS is rare and steroid-resistant FSGS frequently progresses to renal failure. Many inheritable forms of FSGS have been described, caused by mutations in proteins that are important for podocyte function. Here, we show that a basic leucine zipper transcription factor, MafB, protects against FSGS. MAFB expression was found to be decreased in the podocytes of patients with FSGS. Moreover, conditional podocyte-specific MafB-knockout mice developed FSGS with massive proteinuria accompanied by depletion of the slit diaphragm-related proteins (Nphs1 and Magi2), and the podocyte-specific transcription factor Tcf21. These findings indicate that MafB plays a crucial role in the pathogenesis of FSGS. Consistent with this, adriamycin-induced FSGS and attendant proteinuria were ameliorated by MafB overexpression in the podocytes of MafB podocyte-specific transgenic mice. Thus, MafB could be a new therapeutic target for FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Podocitos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Glomeruloesclerosis Focal y Segmentaria/genética , Humanos , Factor de Transcripción MafB/genética , Ratones , Ratones Transgénicos , Síndrome Nefrótico/genética , Proteinuria/genética , Proteinuria/prevención & control
18.
Kidney Int ; 98(3): 615-629, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446933

RESUMEN

A wide spectrum of immunological functions has been attributed to Interleukin 9 (IL-9), including effects on the survival and proliferation of immune and parenchymal cells. In recent years, emerging evidence suggests that IL-9 expression can promote tissue repair in inflammatory conditions. However, data about the involvement of IL-9 in kidney tissue protection is very limited. Here, we investigated the role of IL-9 in Adriamycin-induced nephropathy (AN), a mouse model for proteinuric chronic kidney disease. Compared to wild type mice, IL-9 knockout (Il9-/-) mice with AN displayed accelerated development of proteinuria, aggravated glomerulosclerosis and deterioration of kidney function. At an early stage of disease, the Il9-/- mice already displayed a higher extent of glomerular podocyte injury and loss of podocyte number compared to wild type mice. In the kidney, T cells and innate lymphoid cells produced IL-9. However, selective deficiency of IL-9 in the innate immune system in Il9-/-Rag2-/- mice that lack T and B cells did not alter the outcome of AN, indicating that IL-9 derived from the adaptive immune system was the major driver of tissue protection in this model. Mechanistically, we could show that podocytes expressed the IL-9 receptor in vivo and that IL-9 signaling protects podocytes from Adriamycin-induced apoptosis in vitro. Finally, in vivo treatment with IL-9 effectively protected wild type mice from glomerulosclerosis and kidney failure in the AN model. The detection of increased serum IL-9 levels in patients with primary focal and segmental glomerulosclerosis further suggests that IL-9 production is induced by glomerular injury in humans. Thus, IL-9 confers protection against experimental glomerulosclerosis, identifying the IL-9 pathway as a potential therapeutic target in proteinuric chronic kidney disease.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Doxorrubicina/toxicidad , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/prevención & control , Humanos , Inmunidad Innata , Interleucina-9 , Linfocitos , Ratones , Proteinuria/inducido químicamente , Proteinuria/prevención & control
19.
Kidney Int ; 97(1): 62-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31685311

RESUMEN

Immune checkpoint inhibitors have dramatically improved cancer therapy for many patients. These humanized monoclonal antibodies against various immune checkpoints (receptors and ligands) effectively treat a number of malignancies by unleashing the immune system to destroy cancer cells. These drugs are not excreted by the kidneys or liver, have a long half-life, and undergo receptor-mediated clearance. Although these agents have greatly improved the prognosis of many cancers, immune-related end organ injury is a complication that has come to light in clinical practice. Although less common than other organ involvement, kidney lesions resulting in acute kidney injury and/or proteinuria are being described. Acute tubulointerstitial nephritis is the most common lesion seen on kidney biopsy, while acute tubular injury and glomerular lesions occur less commonly. Clinical findings and laboratory tests are suboptimal in predicting the underlying renal lesion, making kidney biopsy necessary in the majority of cases to definitely diagnose the lesion and potentially guide therapy. Immune checkpoint inhibitor discontinuation and corticosteroid therapy are recommended for acute tubulointerstitial nephritis. Based on a handful of cases, re-exposure to these drugs in patients who previously developed acute tubulointerstitial nephritis has been mixed. Although it is unclear whether re-exposure is appropriate, it should perhaps be considered in patients with limited options. When this approach is taken, patients should be closely monitored for recurrence of acute kidney injury. Treatment of cancer in patients with a kidney transplant with immune checkpoint inhibitors risks the development of acute rejection in some patients and requires close surveillance.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antineoplásicos Inmunológicos/efectos adversos , Rechazo de Injerto/prevención & control , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Proteinuria/prevención & control , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/fisiopatología , Rechazo de Injerto/inducido químicamente , Rechazo de Injerto/inmunología , Humanos , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/inmunología , Glomérulos Renales/fisiopatología , Trasplante de Riñón/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Proteinuria/inducido químicamente , Proteinuria/inmunología , Proteinuria/fisiopatología
20.
FASEB J ; 33(11): 11894-11908, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31366236

RESUMEN

Butyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a. We produced an mAb to mouse GPR109a and found high expression on podocytes in the kidney. Wild-type and Gpr109a-/- mice were induced to develop nephropathy by a single injection of Adriamycin and treated with sodium butyrate or high butyrate-releasing high-amylose maize starch diet. Butyrate improved proteinuria by preserving podocyte at glomerular basement membrane and attenuated glomerulosclerosis and tissue inflammation. This protective phenotype was associated with increased podocyte-related proteins and a normalized pattern of acetylation and methylation at promoter sites of genes essential for podocyte function. We found that GPR109a is expressed by podocytes, and the use of Gpr109a-/- mice showed that the protective effects of butyrate depended on GPR109a expression. A prebiotic diet that releases high amounts of butyrate also proved highly effective for protection against kidney disease. Butyrate and GPR109a play a role in the pathogenesis of kidney disease and provide one of the important molecular connections between diet, the gut microbiota, and kidney disease.-Felizardo, R. J. F., de Almeida, D. C., Pereira, R. L., Watanabe, I. K. M., Doimo, N. T. S., Ribeiro, W. R., Cenedeze, M. A., Hiyane, M. I., Amano, M. T., Braga, T. T., Ferreira, C. M., Parmigiani, R. B., Andrade-Oliveira, V., Volpini, R. A., Vinolo, M. A. R., Mariño, E., Robert, R., Mackay, C. R., Camara, N. O. S. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.


Asunto(s)
Butiratos/farmacología , Epigénesis Genética , Microbioma Gastrointestinal/fisiología , Enfermedades Renales/prevención & control , Proteinuria/prevención & control , Receptores Acoplados a Proteínas G/genética , Animales , Bacterias/metabolismo , Butiratos/metabolismo , Células Cultivadas , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA