Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912736

RESUMEN

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Asunto(s)
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocondrias , Animales , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ratones , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G67-G77, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962942

RESUMEN

Keratins are epithelial intermediate filament proteins that play a crucial role in cellular stress protection, with K8 being the most abundant in the colon. The intestinal epithelial-specific K8-deficient mouse model (K8flox/flox;Villin-Cre) exhibits characteristics of inflammatory bowel disease, including diarrhea, crypt erosion, hyperproliferation, and decreased barrier function. Nevertheless, the order in which these events occur and whether they are a direct cause of K8 loss or a consequence of one event inducing another remains unexplored. Increased knowledge about early events in the disruption of colon epithelial integrity would help to understand the early pathology of inflammatory and functional colon disorders and develop preclinical models and diagnostics of colonic diseases. Here, we aimed to characterize the order of physiological events after Krt8 loss by utilizing K8flox/flox;Villin-CreERt2 mice with tamoxifen-inducible Krt8 deletion in intestinal epithelial cells, and assess stool analysis as a noninvasive method to monitor real-time gene expression changes following Krt8 loss. K8 protein was significantly decreased within a day after induction, followed by its binding partners, K18 and K19 from day 4 onward. The sequential colonic K8 downregulation in adult mice leads to immediate diarrhea and crypt elongation with activation of proliferation signaling, followed by crypt loss and increased neutrophil activity within 6-8 days, highlighting impaired water balance and crypt elongation as the earliest colonic changes upon Krt8 loss. Furthermore, epithelial gene expression patterns were comparable between colon tissue and stool samples, demonstrating the feasibility of noninvasive monitoring of gut epithelia in preclinical research utilizing Cre-LoxP-based intestinal disease models.NEW & NOTEWORTHY Understanding the order in which physiological and molecular events occur helps to recognize the onset of diseases and improve their preclinical models. We utilized Cre-Lox-based inducible keratin 8 deletion in mouse intestinal epithelium to characterize the earliest events after keratin 8 loss leading to colitis. These include diarrhea and crypt elongation, followed by erosion and neutrophil activity. Our results also support noninvasive methodology for monitoring colon diseases in preclinical models.


Asunto(s)
Colitis , Queratina-8 , Animales , Ratones , Colitis/genética , Diarrea , Queratina-18/genética , Queratina-8/genética , Queratina-8/metabolismo , Queratinas/química , Queratinas/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G438-G453, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860856

RESUMEN

Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.


Asunto(s)
Colon , Metabolismo Energético , Queratina-8 , Ratones Noqueados , Mitocondrias , Animales , Mitocondrias/metabolismo , Células CACO-2 , Humanos , Queratina-8/metabolismo , Queratina-8/genética , Colon/metabolismo , Ratones , Prohibitinas , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Enterocitos/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
4.
Hepatology ; 77(1): 144-158, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35586977

RESUMEN

BACKGROUND AND AIMS: Hepatocyte keratin polypeptides 8/18 (K8/K18) are unique among intermediate filaments proteins (IFs) in that their mutation predisposes to, rather than causes, human disease. Mice that overexpress human K18 R90C manifest disrupted hepatocyte keratin filaments with hyperphosphorylated keratins and predisposition to Fas-induced liver injury. We hypothesized that high-throughput screening will identify compounds that protect the liver from mutation-triggered predisposition to injury. APPROACH AND RESULTS: Using A549 cells transduced with a lentivirus K18 construct and high-throughput screening, we identified the SRC-family tyrosine kinases inhibitor, PP2, as a compound that reverses keratin filament disruption and protects from apoptotic cell death caused by K18 R90C mutation at this highly conserved arginine. PP2 also ameliorated Fas-induced apoptosis and liver injury in male but not female K18 R90C mice. The PP2 male selectivity is due to its lower turnover in male versus female livers. Knockdown of SRC but not another kinase target of PP2, protein tyrosine kinase 6, in A549 cells abrogated the hepatoprotective effect of PP2. Phosphoproteomic analysis and validation showed that the protective effect of PP2 associates with Ser/Thr but not Tyr keratin hypophosphorylation, and differs from the sex-independent effect of the Ser/Thr kinase inhibitor PKC412. Inhibition of RAF kinase, a downstream target of SRC, by vemurafenib had a similar protective effect to PP2 in A549 cells and male K18 R90C mice. CONCLUSIONS: PP2 protects, in a male-selective manner, keratin mutation-induced mouse liver injury by inhibiting SRC-triggered downstream Ser/Thr phosphorylation of K8/K18, which is phenocopied by RAF kinase inhibitor vemurafenib. The PP2/vemurafenib-associated findings, and their unique mechanisms of action, further support the potential role of select kinase inhibition as therapeutic opportunities for keratin and other IF-associated human diseases.


Asunto(s)
Queratinas , Familia-src Quinasas , Ratones , Masculino , Humanos , Animales , Queratinas/metabolismo , Familia-src Quinasas/metabolismo , Vemurafenib/metabolismo , Vemurafenib/farmacología , Ratones Transgénicos , Hígado/metabolismo , Queratina-8/genética , Queratina-8/metabolismo , Mutación , Queratina-18
5.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36045259

RESUMEN

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Degradación Asociada con el Retículo Endoplásmico , Queratina-8/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células HeLa , Humanos , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cell Mol Life Sci ; 79(2): 95, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080691

RESUMEN

Autophagy is a lysosome-mediated degradative process that removes damaged proteins and organelles, during which autophagosome-lysosome fusion is a key step of the autophagic flux. Based on our observation that intermediate cytofilament keratin 8 (KRT8) enhances autophagic clearance in cells under oxidative stress condition, we investigated whether KRT8 supports the cytoplasmic architectural networks to facilitate the vesicular fusion entailing trafficking onto filamentous tracks. We found that KRT8 interacts with actin filaments via the cytolinker, plectin (PLEC) during trafficking of autophagosome. When PLEC was knocked down or KRT8 structure was collapsed by phosphorylation, autophagosome-lysosome fusion was attenuated. Inhibition of actin polymerization resulted in accumulation of autophagosomes owing to a decrease in autophagosome and lysosome fusion. Furthermore, myosin motor protein was found to be responsible for vesicular trafficking along the actin filaments to entail autolysosome formation. Thus, the autophagosome-lysosome fusion is aided by PLEC-stabilized actin filaments as well as intermediate cytofilament KRT8 that supports the structural integrity of actin filaments during macroautophagic process under oxidative stress condition.


Asunto(s)
Actinas/metabolismo , Autofagosomas/metabolismo , Queratina-8/metabolismo , Lisosomas/metabolismo , Plectina/metabolismo , Línea Celular , Humanos , Fusión de Membrana , Mapas de Interacción de Proteínas
7.
Biochem Biophys Res Commun ; 590: 97-102, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34973536

RESUMEN

Assembly of pluripotent stem cells to initiate self-organized tissue formation on engineered scaffolds is an important process in stem cell engineering. Pluripotent stem cells are known to exist in diverse pluripotency states, with heterogeneous subpopulations exhibiting differential gene expression levels, but how such diverse pluripotency states orchestrate tissue formation is still an unrevealed question. In this study, using microstructured adhesion-limiting substrates, we aimed to clarify the contribution to self-organized layer formation by mouse embryonic stem cells in different pluripotency states: ground and naïve state. We found that while ground state cells as well as sorted REX1-high expression cells formed discontinuous cell layers with limited lateral spread, naïve state cells could successfully self-organize to form a continuous layer by progressive mesh closure within 3 days. Using sequential immunofluorescence microscopy to examine the mesh closure process, we found that KRT8+ cells were particularly localized around unfilled holes, occasionally bridging the holes in a manner suggestive of their role in the closure process. These results highlight that compared with ground state cells, naïve state cells possess a higher capability to contribute to self-organized layer formation by mesh closure. Thus, this study provides insights with implications for the application of stem cells in scaffold-based tissue engineering.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Andamios del Tejido/química , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Queratina-8/metabolismo , Factor Inhibidor de Leucemia/farmacología , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 586: 14-19, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823217

RESUMEN

Plakophilin3 (PKP3) loss leads to tumor progression and metastasis of colon cancer cells. The goal of this report was to determine if PKP3 loss led to increased disease progression in mice. We generated a colonocyte-specific knockout of PKP3 in APCmin mice, which led to increased adenoma formation, the formation of rectal prolapse, and a significant decrease in survival. The observed increase in rectal prolapse formation and decrease in survival correlated with an increase in the expression of Lipocalin2 (LCN2). Increased disease progression was observed even upon treatment with 5-fluorouracil (5FU). These results suggest that an increase in LCN2 expression might lead to therapy resistance and that LCN2 might serve as a potential therapeutic target in colorectal cancer.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Lipocalina 2/genética , Placofilinas/genética , Prolapso Rectal/genética , Adenoma/tratamiento farmacológico , Adenoma/mortalidad , Adenoma/patología , Animales , Antimetabolitos Antineoplásicos/farmacología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Queratina-8/genética , Queratina-8/metabolismo , Lipocalina 2/metabolismo , Masculino , Metaloproteinasa 7 de la Matriz/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placofilinas/deficiencia , Prolapso Rectal/tratamiento farmacológico , Prolapso Rectal/mortalidad , Prolapso Rectal/patología , Transducción de Señal , Análisis de Supervivencia
9.
Histopathology ; 80(6): 974-981, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35224757

RESUMEN

AIMS: Ballooned hepatocytes represent liver cell degeneration and are histological hallmarks in the diagnosis of non-alcoholic steatohepatitis, a severe form of non-alcoholic fatty liver disease. However, the identification of ballooned hepatocytes is often difficult, especially in the clinical setting of patients with other chronic liver diseases. In this study, we investigated the utility of immunostaining for positive sonic hedgehog (SHh) protein and negative Keratin 8/18 (K8/18) expression on ballooned hepatocytes. METHODS AND RESULTS: Immunohistochemistry for SHh and K8/18 was evaluated independently by two experienced liver pathologists in non-tumorous liver tissue from 100 cases of resected hepatocellular carcinoma of various aetiology. The degree of hepatocyte ballooning was scored as follows: 0, none; 1, few; 2, many ballooned hepatocytes. These evaluations were performed using routine haematoxylin and eosin (H&E) staining, followed by immunostaining for SHh or K8/18. Using SHh or K8/18 immunostaining combined with H&E staining, the score of ballooned hepatocytes was upgraded in 20 and 19 cases, and downgraded in none and 2 cases, respectively. The percentage of observed agreement for ballooned hepatocytes scoring was 85% and 92%, and the weighted kappa value was 0.806 and 0.893 with SHh or K8/18 immunohistochemistry. Considering the immunohistochemistry results, background liver disease diagnosis was changed in 15 out of 100 cases (15%) evaluated. CONCLUSIONS: SHh and K8/18 immunohistochemistry are useful in detecting ballooned hepatocytes, regardless of background liver disease, and improving pathological diagnosis accuracy.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Hedgehog/metabolismo , Hepatocitos/patología , Humanos , Inmunohistoquímica , Queratina-18/metabolismo , Queratina-8/metabolismo , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
10.
Cell Biol Int ; 45(8): 1720-1732, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33847415

RESUMEN

Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73 /Serine431 ) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.


Asunto(s)
Carcinogénesis/metabolismo , Queratina-8/metabolismo , Mutación/fisiología , Neoplasias Cutáneas/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Electroporación/métodos , Células HEK293 , Humanos , Queratina-8/genética , Masculino , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
11.
Int J Gynecol Pathol ; 40(4): 324-332, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897971

RESUMEN

Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAcH) residue in a specific conformation and/or environment recognized by the mouse monoclonal antibody H. O-GlcNAcH is present in several types of cells and in several polypeptides, including cytokeratin 8 and vimentin, on the latter in cells under stress. In the present work, we examined the expression of the O-GlcNAcH in 60 cases of endometrial curettings from missed miscarriage cases containing normal and simple hydropic degenerated chorionic villi in each case, using monoclonal antibody H and indirect immunoperoxidase and Western blot immunoblot. In all cases examined the expression of the O-GlcNAcH was cytoplasmic as follows: (1) syncytiotrophoblastic cells showed very low expression in chorionic villi (CV) with nonhydropic degeneration (NHD) and high expression in hydropic degenerated (HD) CV; (2) cytotrophoblastic cells showed low expression in CV with NHD and high expression in HD CV; (3) fibroblastic cells showed high expression in CV with NHD and very low expression in HD CV; (4) histiocytes showed very low expression in both types of CV; (5) endothelial cells showed high expression in both types of CV. An immunoblot of CV from one case of a legal abortion from a normal first-trimester pregnancy showed 5 polypeptides with 118.5, 106.3, 85, 53, and 36.7 kD bearing the epitope H and the 53 kD corresponded to cytokeratin 8. The expression of the O-GlcNAcH is upregulated in the trophoblastic cells and downregulated in the fibroblastic cells in the HD CV in comparison to the NHD CV.


Asunto(s)
Aborto Espontáneo/metabolismo , Acetilglucosamina/metabolismo , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Epítopos/metabolismo , Queratina-8/metabolismo , Vimentina/metabolismo , Aborto Espontáneo/inmunología , Acetilglucosamina/inmunología , Vellosidades Coriónicas/inmunología , Vellosidades Coriónicas/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Embarazo , Primer Trimestre del Embarazo/inmunología , Primer Trimestre del Embarazo/metabolismo , Trofoblastos/inmunología , Trofoblastos/metabolismo , Regulación hacia Arriba
12.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203895

RESUMEN

Although hepatocellular carcinoma (HCC) is developed with various etiologies, protection of hepatocytes seems basically essential to prevent the incidence of HCC. Keratin 8 and keratin 18 (K8/K18) are cytoskeletal intermediate filament proteins that are expressed in hepatocytes. They maintain the cell shape and protect cells under stress conditions. Their protective roles in liver damage have been described in studies of mouse models, and K8/K18 mutation frequency in liver patients. Interestingly, K8/K18 bind to signaling proteins such as transcription factors and protein kinases involved in HCC development. Since K8/K18 are abundant cytoskeletal proteins, K8/K18 binding with the signaling factors can alter the availability of the factors. Herein, we discuss the potential roles of K8/K18 in HCC development.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Queratina-18/metabolismo , Queratina-8/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Carcinogénesis/patología , Ensayos Clínicos como Asunto , Humanos
13.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502133

RESUMEN

Keratin 8 and keratin 18 (K8/K18) are intermediate filament proteins that form the obligate heteropolymers in hepatocytes and protect the liver against toxins. The mechanisms of protection include the regulation of signaling pathway associated with cell survival. Previous studies show K8/K18 binding with Akt, which is a well-known protein kinase involved in the cell survival signaling pathway. However, the role of K8/K18 in the Akt signaling pathway is unclear. In this study, we found that K8/K18-Akt binding is downregulated by K8/K18 phosphorylation, specifically phosphorylation of K18 ser7/34/53 residues, whereas the binding is upregulated by K8 gly-62-cys mutation. K8/K18 expression in cultured cell system tends to enhance the stability of the Akt protein. A comparison of the Akt signaling pathway in a mouse system with liver damage shows that the pathway is downregulated in K18-null mice compared with nontransgenic mice. K18-null mice with Fas-induced liver damage show enhanced apoptosis combined with the downregulation of the Akt signaling pathway, i.e., lower phosphorylation levels of GSK3ß and NFκB, which are the downstream signaling factors in the Akt signaling pathway, in K18-null mice compared with the control mice. Our study indicates that K8/K18 expression protects mice from liver damage by participating in enhancing the Akt signaling pathway.


Asunto(s)
Queratina-18/metabolismo , Queratina-8/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Cricetinae , Cricetulus , Células HT29 , Humanos , Hígado/metabolismo , Ratones , Fosforilación , Unión Proteica , Estabilidad Proteica
14.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360548

RESUMEN

Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 ß-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of ß-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ ß-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse ß-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.


Asunto(s)
Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/patología , Queratina-18/metabolismo , Queratina-7/metabolismo , Queratina-8/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Queratina-18/genética , Queratina-7/genética , Queratina-8/genética , Ratones , Ratones Noqueados , Regulación hacia Arriba
15.
Breast Cancer Res Treat ; 179(3): 577-584, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31720992

RESUMEN

PURPOSE: Paget's disease (PD) of the breast is an uncommon disease of the nipple usually accompanied by an underlying carcinoma, often HER2 + , and accounting for 0.5-5% of all breast cancer. To date, histogenesis of PD of the breast remains controversial, as two theories-transformation and epidermotropic-have been proposed to explain this disease. Currently, animal models recapitulating PD of the nipple have not been described. METHODS: HER2-enriched DT13 breast cancer cells were injected into the mammary fat pad of NOD scid gamma null (NSG) female mice. Immunohistochemical staining and pathological studies were performed on tumor samples, and diagnosis of PD of the nipple was confirmed by expression of proteins characteristic of Paget cells (epidermal growth factor 2 (HER2), androgen receptor (AR), cytokeratin 7 (CK7), cytokeratin 8/18 (CK8/18), and mucin 1 (MUC1)). In addition, DT13 cells grown in 2D culture and in soft agar assays were sensitive to in vitro treatment with pharmacological inhibitors targeting Her2, adenylyl cyclase, mTOR, and PI3K signaling pathways. RESULTS: Mice developed tumors and nipple lesions that were detected exclusively on the tumor-bearing mammary fat pad. Tumor cells were positive for proteins characteristic of Paget cells. In vitro, DT13 cells were sensitive to inhibition of Her2, adenylyl cyclase, mTOR, and PI3K signaling pathways. CONCLUSIONS: Our results suggest that injection of HER2 + DT13 cells into the mammary fat pad of NSG mice recapitulates critical aspects of the pathophysiology of PD of the nipple, supporting the epidermotropic theory as the more likely to explain the histogenesis of this disease.


Asunto(s)
Neoplasias de la Mama/patología , Glándulas Mamarias Animales/patología , Pezones/patología , Enfermedad de Paget Mamaria/patología , Receptor ErbB-2/metabolismo , Anciano , Animales , Carcinoma Ductal de Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Queratina-18/metabolismo , Queratina-7/metabolismo , Queratina-8/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mucina-1/metabolismo , Trasplante de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Androgénicos/metabolismo , Trasplante Heterólogo
16.
FASEB J ; 33(1): 388-399, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944446

RESUMEN

Keratin intermediate filaments (IFs) are the major cytoskeletal component in epithelial cells. The dynamics of keratin IFs have been described to depend mostly on the actin cytoskeleton, but the rapid transport of fully polymerized keratin filaments has not been reported. In this work, we used a combination of photoconversion experiments and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing to study the role of microtubules and microtubule motors in keratin filament transport. We found that long keratin filaments, like other types of IFs, are transported along microtubules by kinesin-1. Our data revealed that keratin and vimentin are nonconventional kinesin-1 cargoes because their transport did not require kinesin light chains, which are a typical adapter for kinesin-dependent cargo transport. Furthermore, we found that the same domain of the kinesin heavy chain tail is involved in keratin and vimentin IF transport, strongly suggesting that multiple types of IFs move along microtubules using an identical mechanism.-Robert, A., Tian, P., Adam, S. A., Kittisopikul, M., Jaqaman, K., Goldman, R. D., Gelfand, V. I. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.


Asunto(s)
Filamentos Intermedios/metabolismo , Queratina-18/metabolismo , Queratina-8/metabolismo , Cinesinas/fisiología , Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Cinesinas/antagonistas & inhibidores , Ratones , Ratones Noqueados , Microscopía Fluorescente
17.
FASEB J ; 33(8): 9030-9043, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31199680

RESUMEN

Keratin 8 (K8) and keratin 18 (K18) are the intermediate filament proteins whose phosphorylation/transamidation associate with their aggregation in Mallory-Denk bodies found in patients with various liver diseases. However, the functions of other post-translational modifications in keratins related to liver diseases have not been fully elucidated. Here, using a site-specific mutation assay combined with nano-liquid chromatography-tandem mass spectrometry, we identified K8-Lys108 and K18-Lys187/426 as acetylation sites, and K8-Arg47 and K18-Arg55 as methylation sites. Keratin mutation (Arg-to-Lys/Ala) at the methylation sites, but not the acetylation sites, led to decreased stability of the keratin protein. We compared keratin acetylation/methylation in liver disease-associated keratin variants. The acetylation of K8 variants increased or decreased to various extents, whereas the methylation of K18-del65-72 and K18-I150V variants increased. Notably, the highly acetylated/methylated K18-I150V variant was less soluble and exhibited unusually prolonged protein stability, which suggests that additional acetylation of highly methylated keratins has a synergistic effect on prolonged stability. Therefore, the different levels of acetylation/methylation of the liver disease-associated variants regulate keratin protein stability. These findings extend our understanding of how disease-associated mutations in keratins modulate keratin acetylation and methylation, which may contribute to disease pathogenesis.-Jang, K.-H., Yoon, H.-N., Lee, J., Yi, H., Park, S.-Y., Lee, S.-Y., Lim, Y., Lee, H.-J., Cho, J.-W., Paik, Y.-K., Hancock, W. S., Ku, N.-O. Liver disease-associated keratin 8 and 18 mutations modulate keratin acetylation and methylation.


Asunto(s)
Queratina-18/genética , Queratina-18/metabolismo , Queratina-8/genética , Queratina-8/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Acetilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , Cricetinae , Células HT29 , Humanos , Queratina-18/química , Queratina-8/química , Cuerpos de Mallory/metabolismo , Metilación , Proteínas Mutantes/química , Mutación Missense , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Espectrometría de Masas en Tándem
18.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365802

RESUMEN

Leukamenin E is a natural ent-kaurane diterpenoid isolated from Isodon racemosa (Hemsl) Hara that has been found to be a novel and potential keratin filament inhibitor, but its underlying mechanisms remain largely unknown. Here, we show that leukamenin E induces keratin filaments (KFs) depolymerization, largely independently of microfilament (MFs) and microtubules (MTs) in well-spread cells and inhibition of KFs assembly in spreading cells. These effects are accompanied by keratin phosphorylation at K8-Ser73/Ser431 and K18-Ser52 via the by extracellular signal-regulated kinases (ERK) pathway in primary liver carcinoma cells (PLC) and human umbilical vein endothelial cells (HUVECs). Moreover, leukamenin E increases soluble pK8-Ser73/Ser431, pK18-Ser52, and pan-keratin in the cytoplasmic supernatant by immunofluorescence imaging and Western blotting assay. Accordingly, leukamenin E inhibits the spreading and migration of cells. We propose that leukamenin E-induced keratin phosphorylation may interfere with the initiation of KFs assembly and block the formation of a new KFs network, leading to the inhibition of cell spreading. Leukamenin E is a potential target drug for inhibition of KFs assembly.


Asunto(s)
Diterpenos de Tipo Kaurano/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Queratina-18/metabolismo , Queratina-8/metabolismo , Queratinas/metabolismo , Movimiento Celular , Supervivencia Celular , Citoplasma , Citoesqueleto/patología , Diterpenos de Tipo Kaurano/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica , Solubilidad
19.
J Cell Physiol ; 234(4): 3458-3468, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30368811

RESUMEN

Notochordal cells (NCs), characterized by their vacuolated morphology and coexpression of cytokeratin and vimentin intermediate filaments (IFs), form the immature nucleus pulposus (NP) of the intervertebral disc. As humans age, NCs give way to mature NP cells, which do not possess a vacuolated morphology and typically only express vimentin IFs. In light of their concomitant loss, we investigated the relationship between cytosolic vacuoles and cytokeratin IFs, specifically those containing cytokeratin-8 proteins, using a human chordoma cell line as a model for NCs. We demonstrate that the chemical disruption of IFs with acrylamide, F-actin with cytochalasin-D, and microtubules with nocodazole all result in a significant (p < 0.001) decrease in vacuolation. However, vacuole loss was the greatest in acrylamide-treated cells. Examination of the individual roles of vimentin and cytokeratin-8 IFs in the existence of vacuoles was accomplished using small interfering RNA-mediated RNA interference to knock down either vimentin or cytokeratin-8 expression. Reduction of cytokeratin-8 expression was associated with a less-vacuolated cell morphology. These data demonstrate that cytokeratin-8 IFs are involved in stabilizing vacuoles and that their diminished expression could play a role in the loss of vacuolation in NCs during aging. A better understanding of the NCs may assist in preservation of this cell type for NP maintenance and regeneration.


Asunto(s)
Cordoma/metabolismo , Filamentos Intermedios/metabolismo , Queratina-8/metabolismo , Notocorda/metabolismo , Vacuolas/metabolismo , Acrilamida/toxicidad , Línea Celular Tumoral , Cordoma/patología , Citocalasina D/toxicidad , Humanos , Filamentos Intermedios/efectos de los fármacos , Filamentos Intermedios/genética , Filamentos Intermedios/patología , Queratina-8/genética , Nocodazol/toxicidad , Notocorda/efectos de los fármacos , Notocorda/patología , Transducción de Señal , Vacuolas/efectos de los fármacos , Vacuolas/patología
20.
J Cell Biochem ; 120(6): 9213-9229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30556162

RESUMEN

This study demonstrates that adipose-derived stem cells from debrided skin (dsASCs) of burn patients can be isolated in sufficient quantities and differentiated into cytokeratin-expressing cells by treating them with all-trans retinoic acid (ATRA) and the peroxisome proliferator-activated receptor-α (PPARα) specific activator fenofibrate. Differentiation of dsASCs with ATRA and a combination of growth factors induced expression of simple epithelial markers (KRT7, KRT8, KRT18, and KRT19), along with low levels of stratified epithelial markers (KRT5, KRT10, KRT13, and KRT14). We have optimized a condition to induce dsASCs differentiation to epithelial cells by treatment with ATRA and fenofibrate alone. Real-time polymerase chain reaction analysis showed a significant increase in transcript levels (>75-fold) for basal (KRT5 and KRT14), suprabasal (KRT10), and cornified envelope markers (involucrin [IVL] and Loricrin [LOR]) with this treatment. Expression of the proteins encoded by these transcripts was confirmed by immunocytochemical analysis. Further, we show that dsASCs differentiated to a skin epithelial cell phenotype through activation of nuclear hormone receptors PPARα and RXRγ. Collectively this study shows that dsASCs can be differentiated to skin epithelial cells, without the requirement for exogenous growth factors. This differentiation protocol using dsASCs in combination with an appropriate biocompatible scaffold can be adapted to develop epithelial skin substitute for burn wound treatment.


Asunto(s)
Tejido Adiposo/citología , Quemaduras/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , PPAR alfa/agonistas , Células Madre/citología , Células Madre/efectos de los fármacos , Tretinoina/farmacología , Células Cultivadas , Humanos , Inmunohistoquímica , Queratina-18/metabolismo , Queratina-19/metabolismo , Queratina-7/metabolismo , Queratina-8/metabolismo , Queratinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA