RESUMEN
Global impact of viral diseases specially Monkeypox (mpox) and Marburg virus, emphasizing the urgent need for effective drug interventions. Oxymatrine is an alkaloid which has been selected and modified using various functional groups to enhance its efficacy. The modifications were evaluated using various computatioanal analysis such as pass prediction, molecular docking, ADMET, and molecular dynamic simulation. Mpox and Marburg virus were chosen as target diseases based on their maximum pass prediction spectrum against viral disease. After that, molecular docking, dynamic simulation, DFT, calculation and ADMET prediction were determined. The main objective of this study was to enhance the efficacy of oxymatrine derivatives through functional group modifications and computational analyses to develop effective drug candidates against mpox and Marburg viruses. The calculated binding affinities indicated strong interactions against both mpox virus and Marburg virus. After that, the molecular dynamic simulation was conducted at 100 ns, which confirmed the stability of the binding interactions between the modified oxymatrine derivatives and target proteins. Then, the modified oxymatrine derivatives conducted theoretical ADMET profiling, which demonstrated their potential for effective drug development. Moreover, HOMO-LUMO calculation was performed to understand the chemical reactivity and physicochemical properties of compounds. This computational analysis indicated that modified oxymatrine derivatives for the treatment of mpox and Marburg virus suggested effective drug candidates based on their binding affinity, drug-like properties, stability and chemical reactivity. However, further experimental validation is necessary to confirm their clinical value and efficacy as therapeutic candidates.
Asunto(s)
Alcaloides , Antivirales , Diseño de Fármacos , Marburgvirus , Monkeypox virus , Quinolizinas , Alcaloides/química , Alcaloides/farmacología , Antivirales/farmacología , Antivirales/química , Marburgvirus/efectos de los fármacos , Matrinas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quinolizinas/química , Quinolizinas/farmacología , Monkeypox virus/efectos de los fármacosRESUMEN
Multiple sclerosis (MS) is an inflammatory demyelination neurodegenerative disease of the central nervous system (CNS). Ferroptosis has been implicated in a range of brain disorders, and iron-loaded microglia are frequently found in affected brain regions. However, the molecular mechanisms linking ferroptosis with MS have not been well-defined. The present study seeks to bridge this gap and investigate the impact of matrine (MAT), a herbal medicine with immunomodulatory capacities, on the regulation of oxidative stress and ferroptosis in the CNS of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CNS of EAE mice contained elevated levels of ferroptosis-related molecules, e.g., MDA, LPCAT3 and PTGS2, but decreased expression of antioxidant molecules, including GSH and SOD, GPX4 and SLC7A11. This pathogenic process was reversed by MAT treatment, together with significant reduction of disease severity and CNS inflammatory demyelination. Furthermore, the expression of PTGS2 and LOX was largely increased in microglia of EAE mice, accompanied with increased production of IL-6 and TNF-α, indicating a proinflammatory phenotype of microglia that undergo oxidative stress/ferroptosis, and their expression was significantly reduced after MAT treatment. Together, our results indicate that ferroptosis/inflammation plays an important role in the pathogenesis of CNS autoimmunity, and inhibiting ferroptosis-induced microglial activation/inflammation could be a novel mechanism underlying the therapeutic effects of MAT on CNS inflammatory demyelination in EAE.
Asunto(s)
Alcaloides , Encefalomielitis Autoinmune Experimental , Ferroptosis , Matrinas , Ratones Endogámicos C57BL , Microglía , Quinolizinas , Animales , Ferroptosis/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Ratones , Femenino , Estrés Oxidativo/efectos de los fármacosRESUMEN
BACKGROUND: Non-small cell lung cancer (NSCLC) presents a significant challenge in the medical field due to its high incidence and resistance to chemotherapy. Chemoresistance in NSCLC diminishes treatment efficacy and contributes to poor patient outcomes. Matrine alkaloids have shown promise in reversing chemotherapy resistance in NSCLC by targeting DNA repair mechanisms. METHODS: Utilizing molecular dynamics simulations, we explored the interactions between Matrine alkaloids and DNA repair-related proteins to elucidate their impact on NSCLC cells. In vitro experiments involved treating A549/DDP cells with Matrine alkaloids to evaluate their sensitizing effects on lung cancer cells. Additionally, animal model experiments were conducted to validate the therapeutic potential of Matrine alkaloids in NSCLC treatment. RESULTS: Our findings demonstrate that Matrine alkaloids disrupt DNA damage repair processes in NSCLC cells, leading to increased sensitivity to chemotherapy. Molecular docking studies revealed the intricate mechanisms by which Matrine alkaloids interact with DNA repair proteins, impacting cell survival and proliferation. Both cell experiments and animal models confirmed the chemosensitizing effects of Matrine alkaloids in NSCLC treatment. CONCLUSION: Matrine alkaloids offer a promising avenue for overcoming chemotherapy resistance in NSCLC by interfering with DNA repair pathways. This study lays a solid foundation for future clinical investigations into the potential of Matrine alkaloids as effective therapeutic agents for enhancing NSCLC treatment outcomes.
Asunto(s)
Alcaloides , Carcinoma de Pulmón de Células no Pequeñas , Daño del ADN , Reparación del ADN , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Matrinas , Simulación del Acoplamiento Molecular , Quinolizinas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Alcaloides/farmacología , Quinolizinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animales , Reparación del ADN/efectos de los fármacos , Ratones , Daño del ADN/efectos de los fármacos , Simulación de Dinámica Molecular , Células A549 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacosRESUMEN
Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.
Asunto(s)
Alcaloides , Antivirales , Ácido Glicirrínico , Matrinas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Quinolizinas , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Alcaloides/farmacología , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Porcinos , Antivirales/farmacología , Antivirales/uso terapéutico , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Replicación Viral/efectos de los fármacos , Citocinas/metabolismo , Análisis de SupervivenciaRESUMEN
The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.
Asunto(s)
Alcaloides , Sophora , Matrinas , Reproducibilidad de los Resultados , Alcaloides/toxicidad , Alcaloides/análisis , Quinolizinas/toxicidad , Quinolizinas/análisis , MutaciónRESUMEN
In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.
Asunto(s)
Alcaloides , Antibacterianos , Berberina , Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Gentamicinas , Matrinas , Pruebas de Sensibilidad Microbiana , Enfermedades de las Aves de Corral , Quinolizinas , Animales , Gentamicinas/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Berberina/farmacología , Antibacterianos/farmacología , Quinolizinas/farmacología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Alcaloides/farmacología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Virulencia/efectos de los fármacos , Sinergismo FarmacológicoRESUMEN
Matrine (MT) is a kind of alkaloid extracted from Sophora and is a promising substitute for chemical nematicides and botanical pesticides. The present study utilized sodium alginate (SA), zeolite imidazole salt skeleton (ZIF), and MT as raw materials to prepare a pH-response-release nematicide through the electrostatic spray technique. Zinc metal-organic framework (ZIF-8) was initially synthesized, followed by the successful loading of MT. Subsequently, the electrostatic spray process was employed to encapsulate it in SA, resulting in the formation of MT/ZIF-8@SA microcapsules. The efficiency of encapsulation and drug loadings can reach 79.93 and 26.83%, respectively. Soybean cyst nematode (SCN) is one of the important pests that harm crops; acetic acid produced by plant roots and CO2 produced by root respiration causing a decrease in the pH of the surrounding environment, which is most attractive to the SCN when the pH is between 4.5 and 5.4. MT/ZIF-8@SA releases the loaded MT in response to acetic acid produced by roots and acidic oxides produced by root respiration. The rate of release was 37.67% higher at pH 5.25 compared with pH 8.60. The control efficiency can reach 89.08% under greenhouse conditions. The above results demonstrate that the prepared MT/ZIF-8@SA not only exhibited excellent efficacy but also demonstrated a pH-responsive release of the nematicide.
Asunto(s)
Alginatos , Alcaloides , Cápsulas , Glycine max , Matrinas , Quinolizinas , Electricidad Estática , Alginatos/química , Alcaloides/química , Alcaloides/farmacología , Animales , Concentración de Iones de Hidrógeno , Quinolizinas/química , Glycine max/química , Glycine max/parasitología , Cápsulas/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Antinematodos/química , Antinematodos/farmacología , Nematodos/efectos de los fármacos , Liberación de Fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/químicaRESUMEN
SARS-CoV-2 causes COVID-19, with symptoms ranging from mild to severe, including pneumonia and death. This beta coronavirus has a 30-kilobase RNA genome and shares about 80 % of its nucleotide sequence with SARS-CoV-1. The replication/transcription complex, essential for viral RNA synthesis, includes RNA-dependent RNA polymerase (RdRp, nsp12) enhanced by nsp7 and nsp8. Antivirals like molnupiravir and remdesivir, which are RdRp inhibitors, treat severe COVID-19 but have limitations, highlighting the need for new therapies. This study assessed (-)-cytisine, methylcytisine, and thermopsine derivatives against SARS-CoV-1 and SARS-CoV-2 in vitro, focusing on their RdRp inhibition. Selected compounds from a previous study were evaluated using a SARS-CoV-2 RNA polymerase assay kit to investigate their structure-activity relationships. Compound 17 (1,3-dimethyluracil conjugate with (-)-cytisine and thermopsine) emerged as a potent inhibitor of SARS-CoV-1 and SARS-CoV-2 RdRp, with an IC50 value of 7.8 µM against SARS-CoV-2 RdRp. It showed a dose-dependent reduction in cytopathic effects in cells infected with SARS-CoV-1 and SARS-CoV-2 replicon-based single-round infectious particles (SRIPs) and significantly inhibited SARS-CoV N protein expression, with EC50 values of 0.12 µM for SARS-CoV-1 and 1.47 µM for SARS-CoV-2 SRIPs. Additionally, compound 17 reduced viral subgenomic RNA levels in a concentration-dependent manner in SRIP-infected cells. The structure-activity relationships of compound 17 with SARS-CoV-1 and SARS-CoV-2 RdRp were also investigated, highlighting it as a promising lead for developing antiviral agents against SARS and COVID-19.
Asunto(s)
Antivirales , Quinolizinas , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Azocinas/farmacología , Azocinas/química , Azocinas/síntesis química , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Citidina/análogos & derivados , Citidina/farmacología , Citidina/química , Citidina/síntesis química , Quinolizinas/farmacología , Quinolizinas/química , Quinolizinas/síntesis química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Relación Estructura-Actividad , Uracilo/análogos & derivados , Uracilo/farmacología , Uracilo/química , Uracilo/síntesis químicaRESUMEN
Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.
Asunto(s)
Alcaloides , Apoptosis , Diseño de Fármacos , Matrinas , Daño por Reperfusión Miocárdica , Quinolizinas , Ratas Sprague-Dawley , Alcaloides/farmacología , Alcaloides/química , Alcaloides/síntesis química , Animales , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Ratas , Apoptosis/efectos de los fármacos , Masculino , Relación Estructura-Actividad , Estructura Molecular , Cardiotónicos/farmacología , Cardiotónicos/síntesis química , Cardiotónicos/química , Relación Dosis-Respuesta a Droga , Línea Celular , Neovascularización Fisiológica/efectos de los fármacos , AngiogénesisRESUMEN
Oxymatrine (OMT) as a quinazine alkaloid extracted from matrine has been shown to exhibit anti-inflammatory and anti-tumour effects. However, the protective mechanism of OMT on NSAID-associated small bowel mucosal injury remains unreported. We found that OMT could improve the clinical symptoms and pathological inflammation scoring, reduce the secretion of proinflammatory cytokines IL-1ß, IL-6 and TNF-α and cell apoptosis, promote cell proliferation and protect intestinal mucosal barrier as compared with the Diclofenac Sodium (DS) group. Further RNA-seq and KEGG analysis uncovered that the differentially expressed genes between DS and control groups were mainly enriched in immune regulation, of which MIP-1γ and its receptor CCR1 expression were validated to be repressed by OMTH. MAPK/NF-κB as the MIP-1 upstream signalling was also inactivated by OMT treatment. In this study, OMT regulated gut microbiota. Venn diagrams visualized and identified 1163 shared OTUs between DS group and OMTH group. The results showed that the α diversity index in the DS group was lower than that in the OMTH group, indicating that the complexity of the flora was reduced in the intestinal inflammatory state. ß diversity mainly includes Principal Component Analysis (PCA) and Principal Co-ordinates Analysis (PCoA). The differences between groups can be observed through PCA. The more similar the composition of the flora, the closer the samples are. We found that the difference was smaller in the DS group than in the OMTH group. The results of PcoA showed that the sample similarity between OMTH groups was the highest. Moreover, gut microbiota analysis unveiled that the abundances of Ruminococcus 1, Oscillibacter and Prevotellaceae at the genus level as well as Lactobacillus SP-L-Yj at the species level were increased in OMTH group as compared with the DS group but the abundance of Allobaculum, Ruminococceos-UCG-005, Ruminococceos-NK4A214 and Clostridium associated with DS-induced small bowel mucosal injury could be decreased by OMTH. MIP-1α and CCR1 were upregulated in human small bowel injury samples as compared with the normal ileal mucosa tissues. In conclusion, our findings demonstrated that OMT could alleviate NSAID-associated small bowel mucosal injury by inhibiting MIP-1γ/CCR1 signalling and regulating gut microbiota.
Asunto(s)
Alcaloides , Antiinflamatorios no Esteroideos , Microbioma Gastrointestinal , Mucosa Intestinal , Quinolizinas , Receptores CCR1 , Transducción de Señal , Quinolizinas/farmacología , Antiinflamatorios no Esteroideos/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Alcaloides/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Animales , Masculino , Receptores CCR1/metabolismo , Receptores CCR1/genética , Intestino Delgado/efectos de los fármacos , Intestino Delgado/microbiología , Intestino Delgado/metabolismo , Diclofenaco/efectos adversos , Apoptosis/efectos de los fármacos , Humanos , Citocinas/metabolismo , Citocinas/genética , MatrinasRESUMEN
The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.
Asunto(s)
Alcaloides , Artritis Experimental , Artritis Reumatoide , Fibroblastos , Matrinas , FN-kappa B , Quinolizinas , Sinoviocitos , Factor de Necrosis Tumoral alfa , Animales , Sinoviocitos/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Alcaloides/farmacología , Ratas , Quinolizinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Fibroblastos/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Masculino , Proliferación Celular/efectos de los fármacos , Sophora/química , Ratas Sprague-DawleyRESUMEN
Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.
Asunto(s)
Alcaloides , Proteína HMGB1 , Inflamación , Lipopolisacáridos , FN-kappa B , Quinolizinas , Receptor para Productos Finales de Glicación Avanzada , Sepsis , Transducción de Señal , Alcaloides/farmacología , Alcaloides/uso terapéutico , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , FN-kappa B/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/antagonistas & inhibidores , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células THP-1 , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , MatrinasRESUMEN
Arsenic (As) has been classified as a carcinogen for humans. There is abundant evidence indicating that arsenic increases the risk of bladder cancer among human populations. However, the underlying mechanisms have yet to be fully understood and elucidated. NADPH oxidases (NOXs) are the main enzymes for ROS production in the body. NADPH Oxidase 2 (NOX2), which is the most distinctive and ubiquitously expressed subunit of NOXs, can promote the formation and development of tumors. The utilization of NOX2 as a therapeutic target has been proposed to modulate diseases resulting from the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Matrine has been reported to exhibit various pharmacological effects, including anti-inflammatory, antifibrotic, antitumor, and analgesic properties. However, it has not been reported whether matrine can inhibit malignant transformation induced by arsenic in uroepithelial cells through NOX2. We have conducted a series of experiments using both a sub-chronic NaAsO2 exposure rat model and a long-term NaAsO2 exposure cell model. Our findings indicate that arsenic significantly increases cell proliferation, migration, and angiogenesis in vivo and in vitro. Arsenic exposure resulted in an upregulation of reactive oxygen species (ROS), NOX2, and NLRP3 inflammasome expression. Remarkably, both in vivo and in vitro, the administration of matrine demonstrated a significant improvement in the detrimental impact of arsenic on bladder epithelial cells. This was evidenced by the downregulation of proliferation, migration, and angiogenesis, as well as the expression of the NOX2 and NLRP3 inflammasomes. Collectively, these findings indicate that matrine possesses the ability to reduce NOX2 levels and inhibit the transformation of bladder epithelial cells.
Asunto(s)
Alcaloides , Arsénico , Proliferación Celular , Transformación Celular Neoplásica , Matrinas , NADPH Oxidasa 2 , Quinolizinas , Especies Reactivas de Oxígeno , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Humanos , Arsénico/toxicidad , Arsénico/efectos adversos , Alcaloides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratas , Quinolizinas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Movimiento Celular/efectos de los fármacos , Línea Celular , MasculinoRESUMEN
Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.
Asunto(s)
Alcaloides , Sulfato de Dextran , Microbioma Gastrointestinal , Matrinas , Estrés Oxidativo , Quinolizinas , Linfocitos T Reguladores , Animales , Alcaloides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Ratones , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Masculino , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/microbiología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Proteína de la Zonula Occludens-1/metabolismo , Colon/patología , Colon/metabolismo , Colon/efectos de los fármacos , Colon/microbiología , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Células Th17/inmunología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Ocludina/metabolismoRESUMEN
OBJECTIVE: To assess the effects of an α2-adrenoceptor agonist (detomidine) constant rate infusion (CRI) with and without an α2-adrenoceptor antagonist (vatinoxan) CRI on blood insulin and glucose concentrations, heart rate, intestinal borborygmi, and sedation during and after infusion in horses. STUDY DESIGN: Randomized, blinded, crossover, experimental study. ANIMALS: A total of nine healthy, adult Finnhorse mares. METHODS: Horses were treated with an intravenous (IV) detomidine loading dose (0.01 mg kg-1), followed by CRI (0.015 mg kg-1 hour-1), and the same doses of detomidine combined with an IV vatinoxan loading dose (0.15 mg kg-1), followed by CRI (detomidine and vatinoxan; 0.05 mg kg-1 hour-1) with an 18 day washout period. Infusion time was 60 minutes and horses were monitored for 240 minutes after the infusion. Heart rate, borborygmi score and sedation were assessed, and blood glucose, insulin and triglyceride concentrations were measured. Data were analyzed using repeated measures ancova and Wilcoxon signed-rank tests. Values of p < 0.05 were considered statistically significant. RESULTS: Insulin concentration decreased during (median nadir 1.7, range 0.0-2.9 µIU mL-1 at 60 minutes, p < 0.0001) and increased after detomidine CRI (median 36.6, range 11.7-78.4 µIU mL-1 at 180 minutes, p = 0.0001) significantly compared with detomidine and vatinoxan CRI. A significant elevation of blood glucose (peak 11.5 ± 1.6 mmol L-1 at 60 minutes, p < 0.0001) was detected during detomidine CRI. Vatinoxan alleviated the insulin changes and abolished the significant increase in blood glucose. Vatinoxan alleviated the decrease in heart rate (p = 0.0001) during detomidine infusion. No significant differences were detected in sedation scores between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Vatinoxan attenuated the negative adverse effects of detomidine CRI and thus is potentially beneficial when used in combination with an α2-adrenoceptor agonist CRI in horses.
Asunto(s)
Hipnóticos y Sedantes , Imidazoles , Insulina , Quinolizinas , Caballos , Animales , Femenino , Glucemia , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Receptores Adrenérgicos , Estudios CruzadosRESUMEN
Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.
Asunto(s)
Alcaloides , Antraquinonas , Matrinas , Simulación de Dinámica Molecular , Nanopartículas , Quinolizinas , Cicatrización de Heridas , Alcaloides/química , Alcaloides/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quinolizinas/química , Quinolizinas/farmacología , Nanopartículas/química , Antraquinonas/química , Antraquinonas/farmacología , Animales , Portadores de Fármacos/química , Ratones , Hidrogeles/química , HumanosRESUMEN
The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.
Asunto(s)
Alcaloides , Glutatión , Indoles , Isoindoles , Matrinas , Quinolizinas , Especies Reactivas de Oxígeno , Alcaloides/química , Alcaloides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Quinolizinas/química , Quinolizinas/farmacología , Glutatión/metabolismo , Humanos , Animales , Indoles/química , Indoles/farmacología , Ratones , Línea Celular Tumoral , Compuestos de Zinc/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Proteolisis , Nanopartículas/químicaRESUMEN
OBJECTIVE: To evaluate the effect of oral tasipimidine on dog handling, ease of catheter placement and propofol and isoflurane requirements for anaesthesia. STUDY DESIGN: Placebo-controlled, randomized, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 13.1 ± 2.7 kg with a mean age of 18.6 ± 1 months. METHODS: The dogs underwent four treatments before induction of anaesthesia with propofol. PP: placebo orally (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) intravenously (IV). TP: tasipimidine 30 µg kg-1 (PO) 60 minutes before induction of anaesthesia followed by placebo (NaCl 0.9%) IV. TMP: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 IV. TMPD: tasipimidine 30 µg kg-1 PO 60 minutes before induction of anaesthesia followed by methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by a dexmedetomidine constant rate infusion of 1 µg kg-1 hour-1. Sedation, response to catheter placement, intubation quality, time to loss of consciousness, time to intubation, required dose of propofol and minimum alveolar isoflurane concentration preventing motor movement (MACNM) were determined. A mixed-model analysis or the Friedman and Mann-Whitney test were used; p-value < 0.05. RESULTS: Response to catheter placement did not differ between treatments. Tasipimidine alone reduced the propofol dose by 30%. Addition of methadone or methadone and dexmedetomidine reduced the propofol dose by 48% and 50%, respectively. Isoflurane MACNM was reduced by 19% in tasipimidine-medicated dogs, whereas in combination with methadone or methadone and dexmedetomidine, isoflurane MACNM was reduced by 35%. CONCLUSIONS AND CLINICAL RELEVANCE: An anxiolytic dose of tasipimidine induced mild signs of sedation in dogs and reduced propofol and isoflurane requirements to induce and maintain anaesthesia, which needs to be considered in an anaesthetic plan.
Asunto(s)
Ansiolíticos , Imidazoles , Propofol , Animales , Perros , Masculino , Ansiolíticos/administración & dosificación , Ansiolíticos/farmacología , Propofol/administración & dosificación , Propofol/farmacología , Femenino , Isoflurano/administración & dosificación , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacología , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacología , Quinolizinas/administración & dosificación , Quinolizinas/farmacología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacologíaRESUMEN
Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1ß) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1ß at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 µM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1ß in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.
Asunto(s)
Alcaloides , Colitis Ulcerosa , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Quinolizinas , Animales , Quinolizinas/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Alcaloides/farmacología , Piroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Ratas , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Células RAW 264.7 , Masculino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Ácido Trinitrobencenosulfónico , Lipopolisacáridos , MatrinasRESUMEN
OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.