RESUMEN
This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.
Asunto(s)
Lesiones Encefálicas , Factor Neurotrófico Derivado del Encéfalo , Cognición , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , AMP Cíclico , Quinuclidinas , Ratas Sprague-Dawley , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Cognición/efectos de los fármacos , Masculino , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , AMP Cíclico/metabolismo , Ratas , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Fosforilación/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de EnfermedadRESUMEN
OBJECTIVE: The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS: Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1ß in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS: In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION: Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.
Asunto(s)
Gasderminas , Pulmón , Piroptosis , Quinuclidinas , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Piroptosis/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Ratas , Quinuclidinas/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Masculino , Malondialdehído/metabolismo , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Caspasa 1/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismoRESUMEN
Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.
Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Infarto del Miocardio , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Masculino , Citocinas/metabolismo , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ratones Endogámicos C57BL , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Compuestos de Bencilideno/farmacologíaRESUMEN
Cancer treatments are frequently associated with nausea and vomiting despite greatly improved preventive medication. Administration of antinausea agents as eye drops might provide easy and rapid access to the systemic circulation for prevention of nausea and vomiting and for the treatment of breakthrough nausea, but the ocular administration route has rarely been evaluated. Palonosetron is a second-generation 5-hydroxytryptamine 3 receptor antagonist approved for prevention and treatment of chemotherapy-induced nausea and vomiting. We compared ocular administration of palonosetron to non-active vehicle eye drops and to intravenous palonosetron in the prevention of cisplatin-induced nausea and vomiting in beagle dogs. Palonosetron ocular drops at the dose of 30 µg/kg reduced cumulative nausea over time as measured with the area under the visual analog scale curve by 98% compared with the vehicle and reduced nausea-associated dog behavior by 95%. Vomiting was completely prevented with repeated palonosetron ocular dosing. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) palonosetron formulation was well tolerated locally at the palonosetron concentration of 3 mg/ml. Absorption of palonosetron from eye drops was fast. Ten minutes after ocular administration, palonosetron plasma concentrations were similar compared with intravenous administration, and remained similar for six hours. We conclude that palonosetron is rapidly absorbed into the systemic circulation from eye drops. Ocularly administered palonosetron was well tolerated in the HP-ß-CD formulation and was highly effective in the prevention of cisplatin-induced nausea and vomiting. Evaluation of the safety and efficacy of ocular administration of palonosetron is warranted in the prevention and treatment of chemotherapy-induced nausea and vomiting in clinical trials. SIGNIFICANCE STATEMENT: Palonosetron, an effective and well-tolerated antiemetic drug was rapidly absorbed into the systemic blood circulation when administered as eye drops. The achieved palonosetron blood concentrations prevented cisplatin-induced nausea and vomiting in beagle dogs. Palonosetron eye drops might provide an easy and quick method for administering palonosetron when parenteral administration is desired and intravenous administration is not feasible.
Asunto(s)
Antineoplásicos , Cisplatino , Animales , Perros , Palonosetrón/efectos adversos , 2-Hidroxipropil-beta-Ciclodextrina , Administración Oftálmica , Isoquinolinas/farmacología , Quinuclidinas/farmacología , Vómitos/inducido químicamente , Náusea/inducido químicamente , Antineoplásicos/uso terapéutico , DexametasonaRESUMEN
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system's activity and are, therefore, excellent pharmacological targets to address a range of medical conditions. We designed, synthesized, and profiled 14 N-alkyl quaternary quinuclidines as inhibitors of human AChE and BChE and analyzed their impact on cell viability to assess their safety in the context of application as potential therapeutics. Our results showed that all of the 14 tested quinuclidines inhibited both AChE and BChE in the micromolar range (Ki = 0.26 - 156.2 µM). The highest inhibition potency was observed for two bisquaternary derivatives, 7 (1,1'-(decano)bis(3-hydroxyquinuclidinium bromide)) and 14 (1,1'-(decano)bis(3-hydroxyiminoquinuclidinium bromide)). The cytotoxic effect within 7-200 µM was observed only for monoquaternary quinuclidine derivatives, especially those with the C12-C16 alkyl chain. Further analysis revealed a time-independent mechanism of action, significant LDH release, and a decrease in the cells' mitochondrial membrane potential. Taking all results into consideration, we can confirm that a quinuclidine core presents a good scaffold for cholinesterase binding and that two bisquaternary quinuclidine derivatives could be considered as candidates worth further investigations as drugs acting in the cholinergic system. On the other hand, specific cell-related effects probably triggered by the free long alkyl chain in monoquaternary quinuclidine derivatives should not be neglected in future N-alkyl quaternary quinuclidine derivative structure refinements. Such an effect and their potential to interact with other specific targets, as indicated by a pharmacophore model, open up a new perspective for future investigations of these compounds' scaffold in the treatment of specific conditions and diseases other than cholinergic system-linked disorders.
Asunto(s)
Butirilcolinesterasa , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa , Bromuros , Supervivencia Celular , Acetilcolina , Dolor , Quinuclidinas/farmacologíaRESUMEN
α3ß4 Nicotinic acetylcholine receptor (nAChR) has been recognized as an emerging biomarker for the early detection of drug addiction. Herein, α3ß4 nAChR ligands were designed and synthesized to improve the binding affinity and selectivity of two lead compounds, (S)-QND8 and (S)-T2, for the development of an α3ß4 nAChR tracer. The structural modification was achieved by retaining the key features and expanding the molecular structure with a benzyloxy group to increase the lipophilicity for blood-brain barrier penetration and to extend the ligand-receptor interaction. The preserved key features are a fluorine atom for radiotracer development and a p-hydroxyl motif for ligand-receptor binding affinity. Four (R)- and (S)-quinuclidine-triazole (AK1-AK4) were synthesized and the binding affinity, together with selectivity to α3ß4 nAChR subtype, were determined by competitive radioligand binding assay using [3H]epibatidine as a radioligand. Among all modified compounds, AK3 showed the highest binding affinity and selectivity to α3ß4 nAChR with a Ki value of 3.18 nM, comparable to (S)-QND8 and (S)-T2 and 3069-fold higher affinity to α3ß4 nAChR in comparison to α7 nAChR. The α3ß4 nAChR selectivity of AK3 was considerably higher than those of (S)-QND8 (11.8-fold) and (S)-T2 (294-fold). AK3 was shown to be a promising α3ß4 nAChR tracer for further development as a radiotracer for drug addiction.
Asunto(s)
Receptores Nicotínicos , Trastornos Relacionados con Sustancias , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ligandos , Ensayo de Unión Radioligante , Receptores Nicotínicos/metabolismo , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Quinuclidinas/química , Quinuclidinas/farmacología , Triazoles/química , Triazoles/farmacologíaRESUMEN
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.
Asunto(s)
Antivirales/farmacología , Carbamatos/farmacología , Dioxanos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Glicoesfingolípidos/antagonistas & inhibidores , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pirrolidinas/farmacología , Quinuclidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/síntesis química , COVID-19/enzimología , COVID-19/virología , Carbamatos/síntesis química , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/virología , Chlorocebus aethiops , Ensayos Clínicos Fase III como Asunto , Dioxanos/síntesis química , Perros , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/biosíntesis , Interacciones Huésped-Patógeno/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/enzimología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Pirrolidinas/síntesis química , Quinuclidinas/síntesis química , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Transducción de Señal , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19RESUMEN
Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 ß 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.
Asunto(s)
Antitusígenos/uso terapéutico , Benzofuranos/uso terapéutico , Tos/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Quinuclidinas/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Antitusígenos/farmacología , Benzofuranos/farmacología , Tos/metabolismo , Cobayas , Masculino , Nicotina/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Quinuclidinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistasRESUMEN
Deregulation of v-myc avian myelocytomatosis viral oncogene homolog (MYC) occurs in a broad range of human cancers and often predicts poor prognosis and resistance to therapy. However, directly targeting oncogenic MYC remains unsuccessful, and indirectly inhibiting MYC emerges as a promising approach. Checkpoint kinase 1 (CHK1) is a protein kinase that coordinates the G2/M cell cycle checkpoint and protects cancer cells from excessive replicative stress. Using c-MYC-mediated T-cell acute lymphoblastic leukemia (T-acute lymphoblastic leukemia) and N-MYC-driven neuroblastoma as model systems, we reveal that both c-MYC and N-MYC directly bind to the CHK1 locus and activate its transcription. CHIR-124, a selective CHK1 inhibitor, impairs cell viability and induces remarkable synergistic lethality with mTOR inhibitor rapamycin in MYC-overexpressing cells. Mechanistically, rapamycin inactivates carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), the essential enzyme for the first three steps of de novo pyrimidine synthesis, and deteriorates CHIR-124-induced replicative stress. We further demonstrate that dual treatments impede T-acute lymphoblastic leukemia and neuroblastoma progression in vivo. These results suggest simultaneous targeting of CHK1 and mTOR as a novel and powerful co-treatment modality for MYC-mediated tumors.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Neuroblastoma/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/mortalidad , Neuroblastoma/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Quinolinas/farmacología , Quinolinas/uso terapéutico , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Mutations in p53, identified in 90% of oesophageal squamous cell carcinoma (ESCC), are associated with unfavourable prognosis and chemo-resistance. APR-246 induces apoptosis by restoring transcriptional ability of mutant p53, and may be a promising therapeutic agent to overcome chemo-resistance in ESCC. METHODS: In ESCC cell lines differing in p53 status, we performed in vitro cell viability and apoptosis assays, evaluated reactive oxygen species (ROS) generation, and assessed signal changes by western blot after APR-246 administration with/without chemo-agent. Antitumour effects and signal changes were evaluated in in vivo experiments using xenograft and patient-derived xenograft (PDX) mouse models. RESULTS: APR-246 administration induced significant apoptosis by upregulating p73 and Noxa via ROS induction in ESCC cell lines harbouring p53 missense mutations. Moreover, APR-246 plus chemotherapy exerted combined antitumour effects in ESCC with p53 missense mutations. This effect was also mediated through enhanced ROS activity, leading to massive apoptosis via upregulation of p73 and Noxa. These findings were confirmed by xenograft and PDX models with p53 mutant ESCC. CONCLUSION: APR-246 strongly induced apoptosis by inducing ROS activity and p73-Noxa signalling, specifically in ESCC with p53 missense mutation. This antitumour effect was further enhanced by combination with 5-FU, which we first confirmed in ESCC preclinical model.
Asunto(s)
Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinuclidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Ratones , Mutación Missense , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVE: Mebendazole and other anti-parasitic drugs are being used off-prescription based on social media and unofficial accounts of their anti-cancer activity. The purpose of this study was to conduct a controlled evaluation of mebendazole's therapeutic efficacy in cell culture and in vivo models of ovarian cancer. The majority of ovarian cancers harbor p53 null or missense mutations, therefore the effects of p53 mutations and a mutant p53 reactivator, PRIMA-1MET (APR246) on mebendazole activity were evaluated. METHODS: Mebendazole was evaluated in cisplatin-resistant high grade serous stage 3C ovarian cancer patient derived xenograft (PDX) models: PDX-0003 (p53 null) and PDX-0030 (p53 positive), and on ovarian cancer cell lines: MES-OV (p53 R282W), ES2 (p53 S241F), A2780 (p53 wild type), SKOV3 parental (p53 null) and isogenic sublines, SKOV3 R273H p53 and SKOV3 R248W p53. Drug synergy and mechanisms were evaluated in cell cultures using isobolograms, clonogenic assays and western blots. Prevention of tumor establishment was studied in a MES-OV orthotopic model. RESULTS: Mebendazole inhibited growth of ovarian cancer cell cultures at nanomolar concentrations and PDXs at doses up to 50 mg/kg, and reduced orthotopic tumor establishment at 50 mg/kg. The mechanism of mebendazole was associated with p53-independent induction of p21 and tubule depolymerization. PRIMA-1MET also inhibited tumor establishment and worked synergistically with mebendazole in cell culture to inhibit growth and induce intrinsic apoptosis through a p53- and tubule destabilization-independent mechanism. CONCLUSION: This work demonstrates the therapeutic potential of repurposing mebendazole and supports clinical development of mebendazole for ovarian cancer therapy and maintenance.
Asunto(s)
Mebendazol/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Fenbendazol/farmacología , Humanos , Mebendazol/administración & dosificación , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Quinuclidinas/administración & dosificación , Quinuclidinas/farmacología , Distribución Aleatoria , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Checkpoint kinase 1 (CHK1) is critical for S-phase fidelity and preventing premature mitotic entry in the presence of DNA damage. Tumor cells have developed a strong dependence on CHK1 for survival, and hence, this kinase has developed into a promising drug target. Chk1 deficiency in mice results in blastocyst death due to G2/M checkpoint failure showing that it is an essential gene and may be difficult to target therapeutically. Here, we show that chemical inhibition of CHK1 kills murine and human hematopoietic stem and progenitor cells (HSPCs) by the induction of BCL2-regulated apoptosis. Cell death in HSPCs is independent of p53 but requires the BH3-only proteins BIM, PUMA, and NOXA. Moreover, Chk1 is essential for definitive hematopoiesis in the embryo. Noteworthy, cell death inhibition in HSPCs cannot restore blood cell formation as HSPCs lacking CHK1 accumulate DNA damage and stop dividing. Moreover, conditional deletion of Chk1 in hematopoietic cells of adult mice selects for blood cells retaining CHK1, suggesting an essential role in maintaining functional hematopoiesis. Our findings establish a previously unrecognized role for CHK1 in establishing and maintaining hematopoiesis.
Asunto(s)
Apoptosis/genética , Células de la Médula Ósea/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Benzodiazepinonas/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/deficiencia , Embrión de Mamíferos , Feto , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Humanos , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Noqueados , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/farmacología , Quinolinas/farmacología , Quinuclidinas/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Phenotypic screening of an annotated small molecule library identified the quinuclidine tetrahydroisoquinoline solifenacin (1) as a robust enhancer of progranulin secretion with single digit micromolar potency in a murine microglial (BV-2) cell line. Subsequent SAR development led to the identification of 29 with a 38-fold decrease in muscarinic receptor antagonist activity and a 10-fold improvement in BV-2 potency.
Asunto(s)
Descubrimiento de Drogas , Progranulinas/metabolismo , Quinuclidinas/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Quinuclidinas/síntesis química , Quinuclidinas/química , Receptores Muscarínicos/metabolismo , Relación Estructura-ActividadRESUMEN
BACKGROUND: Postoperative nausea and vomiting (PONV) is one of the most frequent complications following strabismus surgery. Penehyclidine, an anticholinergic agent, is widely used as premedication. This study investigated the effect of preoperative penehyclidine on PONV in patients undergoing strabismus surgery. METHODS: In this prospective, randomized, double-blind study, patients scheduled for strabismus surgery under general anesthesia were randomly assigned to either penehyclidine (n = 114) or normal saline (n = 104) group. Penehyclidine was administrated immediately after anesthesia induction, and normal saline was substituted as control. PONV was investigated from 0 to 48 h after surgery. Intraoperative oculocardiac reflex (OCR) was also recorded. RESULTS: Compared with normal saline, penehyclidine significantly reduced PONV incidence (30.7% vs. 54.8%, P < 0.01) and mitigated PONV severity as indicated by severity scoring (P < 0.01). Compared with normal saline, penehyclidine also significantly reduced OCR incidence (57.9% vs. 77.9%, P < 0.01) and mitigated OCR severity, as indicated by the requirement for atropine rescue (77.3% vs. 90.1%, P < 0.05) and the maximum decrease of heart rate during OCR (23.1 ± 9.4 bpm vs. 27.3 ± 12.4 bpm, P < 0.05). The recovery course did not differ between groups. CONCLUSIONS: Penehyclidine administrated after anesthesia induction significantly reduced the incidence of PONV and alleviated intraoperative OCR in patients undergoing strabismus surgery. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT04054479 ). Retrospectively registered August 13, 2019.
Asunto(s)
Complicaciones Intraoperatorias/prevención & control , Náusea y Vómito Posoperatorios/prevención & control , Quinuclidinas/farmacología , Reflejo Oculocardíaco/efectos de los fármacos , Estrabismo/cirugía , Adolescente , Adulto , Anciano , Niño , Preescolar , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
At present, Alzheimer's disease (AD) and related dementias cannot be cured. Therefore, scientists all over the world are trying to find a new approach to prolong an active life of patients with initial dementia. Both pharmacological and non-pharmacological pathways are investigated to improve the key symptom of the disease, memory loss. In this respect, influencing the neuromodulator acetylcholine via muscarinic receptors, such as cevimeline, might be one of the therapeutic alternatives. The purpose of this study is to explore the potential of cevimeline on the cognitive functions of AD patients. The methodology is based on a systematic literature review of available studies found in Web of Science, PubMed, Springer, and Scopus on the research topic. The findings indicate that cevimeline has shown an improvement in experimentally induced cognitive deficits in animal models. Furthermore, it has demonstrated to positively influence tau pathology and reduce the levels of amyloid-ß (Aß) peptide in the cerebral spinal fluid of Alzheimer's patients. Although this drug has not been approved by the FDA for its use among AD patients and there is a lack of clinical studies confirming and extending this finding, cevimeline might represent a breakthrough in the treatment of AD.
Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Agonistas Muscarínicos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neurofarmacología , Preparaciones Farmacéuticas/administración & dosificación , Quinuclidinas/farmacología , Tiofenos/farmacología , Animales , HumanosRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.
Asunto(s)
Benzotiazoles/farmacología , Daño del ADN , Replicación del ADN/efectos de los fármacos , Naftiridinas/farmacología , Quinuclidinas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Replicación del ADN/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
We accidentally found that YM-53601, a known small-molecule inhibitor of squalene synthase (SQS), selectively depletes SQS from mammalian cells upon UV irradiation. Further analyses indicated that the photodepletion of SQS requires its short peptide segment located at the COOH terminus. Remarkably, when the 27 amino acid peptide was fused to green fluorescent protein or unrelated proteins at either the NH2 or COOH terminus, such fusion proteins were selectively depleted when the cells were treated with both YM-53601 and UV exposure. Product analysis and electron spin resonance experiments suggested that the UV irradiation promotes homolytic C-O bond cleavage of the aryl ether group in YM-53601. It is likely that the radical species generated from UV-activated YM-53601 abstract hydrogen atoms from the SQS peptide, leading to the photolysis of the entire protein. The pair of the SQS peptide and YM-53601 discovered in the present study paves the way for the design of a new small-molecule-controlled optogenetic tool.
Asunto(s)
Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Péptidos/farmacología , Fotólisis , Quinuclidinas/farmacología , Células HEK293 , HumanosRESUMEN
Lung cancer, one of the most commonly found carcinoma type, has the highest mortality rate in cancer patients worldwide. Therapeutic interventions targeting to lung cancer become remaining the world significant challenge. Recently, the α7-nicotinic acetylcholine receptor (α7-nAChR) was reported to play an important role in the mechanism underlying lung cancer progression, being intriguing drug target for lung cancer therapy. Hence, the top four α7-nAChR antagonists (QND7, PPRD10, PPRD11 and PPRD12) among our previously developed ligands were proceeded to the in vitro anti-cancer evaluations in non-small cell lung cancer (NSCLC) cell lines (H460 and A549). In this study, we found that QND7 exhibited the highest cytotoxic effect and induced cell apoptosis in both cell lines at a level comparable to cisplatin, whereas the PPRD compounds showed much lower cytotoxicity. Low doses of QND7 and PPRD11 were able to suppress H460 and A549â¯cell proliferation, whereas PPRD10 and PPRD12 were considered ineffective. In an in vitro wound healing assay, QND7-treatment showed the greatest suppression of H460 and A549â¯cell migration. The variations in the anti-cancer activities of PPRD compounds might be, at least in part of, their non-selective antagonisms to serotonin receptor (5-HT3) and α4ß2-nAChR. Further investigation revealed that QND7 was able to minimize protein kinase B/mammalian target of rapamycin (Akt/mTOR) activity, in correlating to its anti-cancer effects. These findings warrant QND7 for further preclinical evaluation and demonstrate the potential of α7-nAChR as cancer drug target.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinuclidinas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Triazoles/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Quinuclidinas/química , Transducción de Señal , Triazoles/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismoRESUMEN
BACKGROUND: Penehyclidine hydrochloride (PHC), a novel anticholinergic reagent, has been shown to exert anti-endoplasmic reticulum stress (ERS), antioxidant, and antiinflammation functions in various rat models. However, the definite pathogenesis of lung defensive roles of PHC remains unclear. This study measured the functions of PHC on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. METHODS: In this research, the LPS-induced ALI model was assessed through the branchial injection of LPS for 24 h. Male Sprague-Dawley rats were randomly allocated into 5 groups: sham, LPS, LPS + PHC (0.5 mg/kg), LPS + PHC (1 mg/kg), and LPS + PHC (2.5 mg/kg). The concentrations of superoxide dismutase, malondialdehyde, myeloperoxidase, and glutathione peroxidase were measured by enzyme-linked immunosorbent assay and immunohistochemistry analysis. Western blotting, real-time PCR, and immunofluorescence analysis were used to determine the ERS-associated protein levels and mRNA expression. The protein levels of Bax, Bcl-2, caspase-3, and caspase-9 were used to measure lung tissue apoptosis. RESULTS: The results revealed that PHC administration inhibited LPS-induced ALI as indicated by the loss in the ratio of injury production evaluated through hematoxylin-eosin staining, in particular the lung sample sections, compared with the LPS group. PHC administration inhibited LPS-induced lung myeloperoxidase and serum concentrations of malondialdehyde, superoxide dismutase, and glutathione peroxidase in rats. PHC administration repressed the LPS-activated ERS-correlated pathway and apoptosis-associated protein levels in rats. CONCLUSIONS: In summary, our findings indicated that PHC has a defensive effect on LPS-induced ALI by inhibiting oxidative stress, attenuating PERK and ATF6 signals, and suppressing ERS-mediated apoptosis.
Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Quinuclidinas/uso terapéutico , Lesión Pulmonar Aguda/sangre , Animales , Evaluación Preclínica de Medicamentos , Glutatión Peroxidasa/sangre , Lipopolisacáridos , Pulmón/metabolismo , Masculino , Malondialdehído/sangre , Peroxidasa/metabolismo , Quinuclidinas/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Superóxido Dismutasa/sangreRESUMEN
BACKGROUND: Remote ischemic postconditioning (RIPost) has been shown to reduce the ischemia-reperfusion injury of the heart and brain. However, the protection mechanisms have not yet been fully elucidated. We have observed that RIPost could alleviate the brain injury after cardiac arrest (CA). The aim of this study was to explore whether α7 nicotinic acetylcholine receptor (α7nAChR) mediates the neuroprotection of RIPost in a rat model of asphyxial CA. MATERIALS AND METHODS: Asphyxial CA model was induced by occlusion of the tracheal tube for 8 min and resuscitated later. RIPost produced by three cycles of 15-min occlusion and 15-min release of the right hind limb by a tourniquet was performed respectively at the moment and the third hour after restoration of spontaneous circulation. The α7nAChR agonist PHA-543613 and the antagonist methyllycaconitine (MLA) were used to investigate the role of α7nAChR in mediating neuroprotective effects. RESULTS: Results showed that α7nAChR was decreased in hippocampus and cortex after resuscitation, whereas RIPost could attenuate the reduction. The use of PHA-543613 provided neuroprotective effects against cerebral injury after CA. Furthermore, RIPost decreased the levels of neuron-specific enolase, inflammatory mediators, the number of apoptotic cells, and phosphorylation of nuclear factor-κB while increased the phosphorylation of signal transducer and activator of transcription-3. However, the above effects of RIPost were attenuated by α7nAChR antagonist methyllycaconitine. CONCLUSIONS: Neuroprotection of RIPost was related with the activation of α7nAChR, which could suppress nuclear factor-κB and activate signal transducer and activator of transcription-3 in a rat asphyxial CA model.