Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683175

RESUMEN

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Asunto(s)
Simulación de Dinámica Molecular , Neurotransmisores , Serotonina , Radiación Terahertz , Ácido gamma-Aminobutírico , Neurotransmisores/química , Ácido gamma-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
2.
Phys Chem Chem Phys ; 26(34): 22413-22422, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140173

RESUMEN

Acetylcholine (Ach) is a common neurotransmitter in the central nervous system (CNS) and peripheral nervous system (PNS). It is one of the neurotransmitters in the autonomic nervous system and the main neurotransmitter in all autonomic ganglia. Experiments have confirmed that electromagnetic waves can affect the synthesis of animal neurotransmitters, but the microscopic effects of electromagnetic waves in the terahertz (THz) frequency band are still unclear. Based on density functional theory (DFT) and molecular dynamics (MD) simulation methods, this paper studies the effect of THz electromagnetic waves on the binding of choline to choline acetyltransferase (ChAT). By emitting THz waves that resonate with the characteristic vibration mode of choline near the active site, it was found that THz waves with a frequency of 45.3 THz affected the binding of choline to ChAT, especially the binding of the active site histidine His324 to choline. The main evidence is that under the action of THz waves, the binding free energy of choline to histidine His324 and ChAT at the active site was significantly reduced compared to noE, which may have a potential impact on the enzymatic synthesis of Ach. It is expected to achieve the purpose of regulating the synthesis of the neurotransmitter Ach under the action of THz waves and treat certain nervous system diseases.


Asunto(s)
Colina O-Acetiltransferasa , Colina , Simulación de Dinámica Molecular , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/química , Colina/metabolismo , Colina/química , Radiación Terahertz , Dominio Catalítico , Unión Proteica , Teoría Funcional de la Densidad , Sitios de Unión , Acetilcolina/metabolismo , Acetilcolina/química , Termodinámica
3.
Appl Opt ; 63(13): 3609-3618, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856546

RESUMEN

This paper presents a decagonal patch antenna loaded with graphene designed for terahertz (THz) frequency applications, with a specific emphasis on its potential for early breast cancer detection. The proposed antenna features a hybrid structure, integrating both copper and graphene materials. A decagonal graphene strip is intricately incorporated into the copper patch, yielding significant improvements in reflection coefficient, bandwidth, and gain. The antenna, with dimensions of 155µm×130µm×13µm, is designed on a polyimide substrate, characterized by a dielectric constant of 3.5 and a loss tangent of 0.0027. To ensure relevance in medical contexts, the design is optimized to operate within the frequency range of 2.1 to 5.7 THz, a critical spectrum for medical applications. Simulation results validate the effectiveness of the proposed antenna, demonstrating S 11<-10d B within the frequency band of 2.1 to 5.7 THz (92.3% fractional bandwidth). The antenna exhibits an impressive bandwidth of 3.6 THz and a gain of 7.87 dBi at 4 THz. These findings establish the graphene-loaded decagonal patch antenna as a highly promising solution for breast cancer detection applications, showcasing its potential in the realm of medical diagnostics.


Asunto(s)
Neoplasias de la Mama , Diseño de Equipo , Grafito , Grafito/química , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Femenino , Cobre/química , Radiación Terahertz
4.
Chaos ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39177954

RESUMEN

We study the metastability, internal frequencies, activation mechanism, energy transfer, and the collective base-flipping in a mesoscopic DNA via resonance with specific electric fields. Our new mesoscopic DNA model takes into account not only the issues of helicity and the coupling of an electric field with the base dipole moments, but also includes environmental effects, such as fluid viscosity and thermal noise. Also, all the parameter values are chosen to best represent the typical values for the opening and closing dynamics of a DNA. Our study shows that while the mesoscopic DNA is metastable and robust to environmental effects, it is vulnerable to certain frequencies that could be targeted by specific THz fields for triggering its collective base-flipping dynamics and causing large amplitude separation of base pairs. Based on applying the Freidlin-Wentzell method of stochastic averaging and the newly developed theory of resonant enhancement to our mesoscopic DNA model, our semi-analytic estimates show that the required fields should be THz fields with frequencies around 0.28 THz and with amplitudes in the order of 450 kV/cm. These estimates compare well with the experimental data of Titova et al., which have demonstrated that they could affect the function of DNA in human skin tissues by THz pulses with frequencies around 0.5 THz and with a peak electric field at 220 kV/cm. Moreover, our estimates also conform to a number of other experimental results, which appeared in the last couple years.


Asunto(s)
ADN , Procesos Estocásticos , Radiación Terahertz , ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico
5.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894440

RESUMEN

Quasi-bound state in the continuum (QBIC) can effectively enhance the interaction of terahertz (THz) wave with matter due to the tunable high-Q property, which has a strong potential application in the detection of low-concentration biological samples in the THz band. In this paper, a novel THz metamaterial sensor with a double-chain-separated resonant cavity structure based on QBIC is designed and fabricated. The process of excitation of the QBIC mode is verified and the structural parameters are optimized after considering the ohmic loss by simulations. The simulated refractive index sensitivity of the sensor is up to 544 GHz/RIU, much higher than those of recently reported THz metamaterial sensors. The sensitivity of the proposed metamaterial sensor is confirmed in an experiment by detecting low-concentration lithium citrate (LC) and bovine serum albumin (BSA) solutions. The limits of detection (LoDs) are obtained to be 0.0025 mg/mL (12 µM) for LC and 0.03125 mg/mL (0.47 µM) for BSA, respectively, both of which excel over most of the reported results in previous studies. These results indicate that the proposed THz metamaterial sensor has excellent sensing performances and can well be applied to the detection of low-concentration biological samples.


Asunto(s)
Técnicas Biosensibles , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Animales , Radiación Terahertz , Bovinos , Espectroscopía de Terahertz/métodos , Refractometría , Compuestos de Litio/química , Ácido Cítrico/química
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892148

RESUMEN

The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.1 sub-THz radiation can modulate the immune system and alleviate symptoms of arthritis in collagen-induced arthritis (CIA) mice through a nonthermal manner. The application of 0.1 sub-THz irradiation led to a decrease in proinflammatory factors within the joints and serum, reducing the levels of blood immune cells and the quantity of splenic CD4+ T cells. Notably, 0.1 sub-THz irradiation restored depleted Treg cells in CIA mice and re-established the Th17/Treg equilibrium. These findings suggested that sub-THz irradiation plays a crucial role in systemic immunoregulation. Further exploration of its immune modulation mechanisms revealed the anti-inflammatory properties of 0.1 sub-THz on LPS-stimulated skin keratinocytes. Through the reduction in NF-κB signaling and NLRP3 inflammasome activation, 0.1 sub-THz irradiation effectively decreased the production of inflammatory factors and immune-active substances, including IL-1ß and PGE2, in HaCaT cells. Consequently, 0.1 sub-THz irradiation mitigated the inflammatory response and contributed to the maintenance of immune tolerance in CIA mice. This research provided significant new evidence supporting the systemic impacts of 0.1 sub-THz radiation, particularly on the immune system. It also enhanced the field of photoimmunology and offered valuable insights into the potential biomedical applications of 0.1 sub-THz radiation for treating autoimmune diseases.


Asunto(s)
Artritis Experimental , Animales , Artritis Experimental/inmunología , Artritis Experimental/radioterapia , Artritis Experimental/patología , Ratones , Radiación Terahertz , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , FN-kappa B/metabolismo , Ratones Endogámicos DBA , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de la radiación , Humanos , Transducción de Señal/efectos de la radiación , Queratinocitos/efectos de la radiación , Queratinocitos/inmunología , Queratinocitos/metabolismo
7.
Angew Chem Int Ed Engl ; 63(26): e202406177, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651494

RESUMEN

The development of electronic skin with dual stealth functionality is crucial for enabling devices to operate effectively in dynamic electromagnetic environments, thereby facilitating intelligent electromagnetic protection for autonomous perception. However, achieving compatibility between terahertz (THz) and infrared (IR) stealth technologies remains largely unexplored due to their inherent contradictions. Herein, inspired by natural corals, a novel coral-like multi-scale composite foam (CMSF) was proposed that ingeniously reconciles these contradictions. The design capitalizes on the conductive network and heat insulation properties of the foam skeleton, the loss effects and low infrared emission of metal particles, and the infrared transparency of magneto-optical materials. This approach leads to the realization of a THz-IR bi-stealth electronic skin concept. The CMSF exhibits a maximum reflection loss of 84.8 dB in the terahertz band, while its infrared stealth capability ensures environmental adaptability under varying temperatures. Furthermore, the electronic skin exhibits exceptional sensitivity and reliability as a wearable device for perceiving environmental changes. This advanced material, combining multispectral stealth with sensing capabilities, holds immense potential for applications ranging from camouflage technology to smart wearables.


Asunto(s)
Antozoos , Rayos Infrarrojos , Dispositivos Electrónicos Vestibles , Antozoos/química , Animales , Radiación Terahertz
8.
J Synchrotron Radiat ; 30(Pt 4): 780-787, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338043

RESUMEN

The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5 nm to investigate the fate of nanospheres inside pheochromocytoma (PC 12) cells following SS THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10 min of SS THz exposure in the range 0.5-20 THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder (26%) sequestered in vacuoles. Cellular uptake of NS in response to SS THz radiation could have suitable applications in a vast number of biomedical applications, regenerative medicine, vaccines, cancer therapy, gene and drug delivery.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Nanosferas , Feocromocitoma , Humanos , Radiación Terahertz , Nanosferas/química , Sincrotrones
9.
Opt Lett ; 48(12): 3147-3150, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37319048

RESUMEN

The terahertz (THz) radiation emitted by an air-based femtosecond filament biased by a static electric field is known to have on-axis shape and relatively low frequency spectrum in contrast to the unbiased single-color and two-color schemes. Here, we measure the THz emission of a 15-kV/cm-biased filament in air produced by a 740-nm, 1.8-mJ, 90-fs pulse and demonstrate that a flat-top on-axis THz angular distribution of the emission at 0.5-1 THz transforms into a contrast ring-shaped one at 10 THz.


Asunto(s)
Electricidad , Radiación Terahertz , Frecuencia Cardíaca
10.
Opt Lett ; 48(13): 3403-3406, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390141

RESUMEN

We report on the efficient generation of broadband THz radiation based on a two-color gas-plasma scheme. Broadband THz pulses covering the whole THz spectral region, from 0.1-35 THz, are generated. This is enabled by a high-power, ultra-fast, thulium-doped, fiber chirped pulse amplification (Tm:FCPA) system and a subsequent nonlinear pulse compression stage that uses a gas-filled capillary. The driving source delivers 40 fs pulses at a central wavelength of 1.9 µm with 1.2 mJ pulse energy and 101 kHz repetition rate. Owing to the long driving wavelength and the use of a gas-jet in the THz generation focus, the highest reported conversion efficiency for high-power THz sources (>20 mW) of 0.32% has been achieved. The high efficiency and average power of 380 mW of the broadband THz radiation make this an ideal source for nonlinear, tabletop THz science.


Asunto(s)
Rayos Láser , Radiación Terahertz , Frecuencia Cardíaca , Tulio , Venas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA